Theoretical arguments and numerical investigations were conducted to understand the transport of oil droplets under ice. It was found that the boundary layer (BL) in the water under ice produces a downward velocity that reaches up to 0.2% of horizontal current speed, and is, in general, larger than the rise velocity of 70 μm oil droplets.
View Article and Find Full Text PDFEnviron Sci Process Impacts
July 2017
Canada's production, transport, and sale of diluted bitumen (dilbit) products are expected to increase by a million barrels per day over the next decade. The anticipated growth in oil production and transport increases the risk of oil spills in aquatic areas and places greater demands on oil spill capabilities to respond to spills, which have raised stakeholder concerns. Current oil spill models only predict the transport of bitumen blends that are used in contingency plans and oil spill response strategies, rather than changes in the oil's physical properties that are relevant to spill response.
View Article and Find Full Text PDF