The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.
View Article and Find Full Text PDFPhosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPATATION1 (BnaNLA1) genes in B.
View Article and Find Full Text PDFPlant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction.
View Article and Find Full Text PDFCopper (Cu) is an essential micronutrient for plant growth and development, but environmental Cu pollution has become increasingly severe, adversely affecting both ecosystems and crop productivity. In this study, we identified the AtNAC002 gene as a positive regulator of Cu toxicity in Arabidopsis thaliana. We found that AtNAC002 expression was induced by Cu excess, and the atnac002 mutant was Cu-sensitive, accumulating more Cu than the wild-type.
View Article and Find Full Text PDFDrought stress (DS) is a hazardous abiotic prerequisite that is becoming increasingly severe around the world. As a result, new management measures to reduce the negative effects of DS are desperately needed to ensure improved agricultural productivity. This review focuses primarily on various DS mitigation strategies that can be utilized to overcome DS.
View Article and Find Full Text PDFBoron (B) deficiency has been shown to inhibit root cell growth and division. However, the precise mechanism underlying B deficiency-mediated root tip growth inhibition remains unclear. In this study, we investigated the role of , a gene encoding a boric acid channel, in ().
View Article and Find Full Text PDFPlant Cell Environ
October 2024
Boron (B) is an essential microelement in plant growth and development. However, the molecular mechanisms underlying B uptake and translocation in Brassica napus are poorly understood. Herein, we identified a low-B (LB)-inducible gene, namely BnaC4.
View Article and Find Full Text PDFMany nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability.
View Article and Find Full Text PDFVacuolar Pi transporters (VPTs) have recently been identified as important regulators of cellular Pi status in and . In the oil crop , and are two homologs of , the vacuolar Pi influx transporter in . Here, we show that Pi deficiency induces the transcription of both homologs of genes in leaves.
View Article and Find Full Text PDFBoron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well.
View Article and Find Full Text PDFTrehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown.
View Article and Find Full Text PDFIn natural and agricultural situations, ammonium ( ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known as toxicity. Nitrate ( ) has long been recognized to reduce toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to high .
View Article and Find Full Text PDFInorganic phosphate (Pi) is actively taken up by Pi transporters (PTs) from the soil and transported into the plant. Here, we functionally characterized the gene which belongs to the PHT1 family. BnaPT37 is a plasma membrane-localized protein containing 534 amino acids.
View Article and Find Full Text PDFNitrogen (N) is an essential macronutrient for plants, and its remobilization is key for adaptation to deficiency stress. However, there is limited understanding of the regulatory mechanisms of N remobilization in the important crop species Brassica napus (oilseed rape). Here, we report the identification of a transcription factor, BnaA9.
View Article and Find Full Text PDFBoron (B) is an indispensable mineral nutrient for plants and is primarily taken up by roots mainly in the form of boric acid (HBO). Recently, research shows that B has a significant impact on plant growth and productivity due to its narrow range between deficiency and toxicity. Fertilization and other procedures to address B stress (deficiency and toxicity) in soils are generally expensive and time-consuming.
View Article and Find Full Text PDFUnlabelled: Oilseed rape ( L.; ) is an important oil crop worldwide. However, the genetic mechanisms of adaptations to low phosphate (P) stress are largely unknown.
View Article and Find Full Text PDF