Introduction: Functions of existing automatic module systems for synthesis of radiopharmaceuticals mainly focus on the radiolabeling of small molecules. There are few modules which have achieved full-automatic radiolabeling of non-metallic and metallic nuclides on small molecules, peptides, and antibody drugs. This study aimed to develop and test a full-automatic multifunctional module system for the safe, stable, and efficient production of radiopharmaceuticals.
View Article and Find Full Text PDFAberrant methylation of the transcription factor AP-2 epsilon (TFAP2E) has been attributed to 5-fluorouridine (5-FU) sensitivity. 5-Aza-2'-deoxycytidine (DAC), an epigenetic drug that inhibits DNA methylation, is able to cause reactive expression of TFAP2E by demethylating activity. This property might be useful in enhancing the sensitivity of cancer cells to 5-FU.
View Article and Find Full Text PDFRadiotherapy is the main locoregional control modality for many types of unresectable tumors, including gastric cancer. However, many patients fail radiotherapy due to intrinsic radioresistance of cancer cells, which has been found to be strongly associated with cancer stem cell (CSC)-like properties. In this study, we developed a nanoparticle formulation to deliver miR-200c, which is reported to inhibit CSC-like properties, and then evaluated its potential activity as a radiosensitizer.
View Article and Find Full Text PDFDocetaxel (DOC) is widely used as radiosensitizer in various tumors, including gastric cancer (GC), but its therapeutic effect remains to be improved. In this study, using docetaxel-loaded nanoparticles (DOC-NPs) based on gelatinase-stimuli strategy, we compared their radioenhancement efficacy with docetaxel in GC. Compared with DOC, radiosensitization of DOC-NPs was improved significantly (sensitization enhancement ratio increased 1.
View Article and Find Full Text PDF