Publications by authors named "Fang-Ying Chiu"

Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a fast-growing and aggressive brain tumor of the central nervous system. It encroaches on brain tissue with heterogeneous regions of a necrotic core, solid part, peritumoral tissue, and edema. This study provided qualitative image interpretation in GBM subregions and radiomics features in quantitative usage of image analysis, as well as ratios of these tumor components.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM.

View Article and Find Full Text PDF

Approximately 96% of patients with glioblastomas (GBM) have IDH1 wildtype GBMs, characterized by extremely poor prognosis, partly due to resistance to standard temozolomide treatment. O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation status is a crucial prognostic biomarker for alkylating chemotherapy resistance in patients with GBM. However, MGMT methylation status identification methods, where the tumor tissue is often undersampled, are time consuming and expensive.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, true "at risk" penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset.

Materials And Methods: The study was approved by the local animal care and use committee. DT imaging data were obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner (Bruker) in room air.

View Article and Find Full Text PDF

Background: The current automatic techniques for measuring arterial input function (AIF) and venous output (VOF) on cerebral computed tomography perfusion images are prone to motion artifact and random noise, and their failure rates vary between 10% and 65%. We developed a new automatic technique to overcome these problems.

Methods: A principle axis transformation was applied to perfusion images to correct for translational and rotational motion artifacts.

View Article and Find Full Text PDF

Objective: To improve the quantitative assessment of cerebral blood volume (CBV) and flow (CBF) in the brain voxels from MR perfusion images.

Materials And Methods: Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature.

View Article and Find Full Text PDF

Background: Cerebral perfusion can be evaluated using a computed tomography (CT) scan by intravenous bolus injection of contrast media. The purpose of this study was to investigate the value of CT perfusion (CTP) in follow-up of extracranial-intracranial (EC-IC) bypass surgery.

Methods: We retrospectively reviewed pre- and postoperative CTP studies in 14 patients who received EC-IC bypass surgery because of cerebral arterial occlusion or stenosis.

View Article and Find Full Text PDF

Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis.

Materials And Methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values.

View Article and Find Full Text PDF

Rationale And Objectives: We evaluated the effect of the arterial input function (AIF) on computed tomography perfusion (CTP) in patients with unilateral high-grade stenosis or occlusion in the carotid artery or middle cerebral artery without acute stroke.

Materials And Methods: CTP datasets were retrospectively postprocessed using the same venous output function and different AIF selections: the second segment of the anterior cerebral artery (A2 AIF), the second segment of the middle cerebral artery (MCA) on the lesion side (affected M2 AIF), and M2 on the contralateral side (nonaffected M2 AIF). We measured CTP values in the region of interest (ROI) in the bilateral MCA territory and evaluated the lesion-to-contralateral ratios.

View Article and Find Full Text PDF

Objective: Diffusion-weighted imaging (DWI) is usually performed before administration of intravenous contrast agents. Repetition of DWI is occasionally necessary after contrast administration, but the effects of contrast material on DWI and apparent diffusion coefficient (ADC) values in the abdomen have not yet been fully examined. The purpose of this work is to assess whether administration of gadolinium-based contrast material significantly affects DWI and ADC values at the focal hepatic lesions.

View Article and Find Full Text PDF