A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.
View Article and Find Full Text PDFWe focused partially coherent laser light onto an optical fiber end-face and captured a high-quality reflective cross-sectional image of the fiber. By analyzing the reflected light intensity distribution of the captured fiber image, we can achieve refractive-index profiling of a step-index multimode optical fiber. The measurement error caused by the reflected light from the other fiber end-face positioned in air can be greatly improved by inserting that end of the fiber into water.
View Article and Find Full Text PDFInserting a coverslip into half of a Gaussian laser beam at a suitable tilting angle can make the single-mode laser beam become closely spaced dual light spots at the laser focus. In this way, we can reform the conventional single-beam optical tweezers easily and construct a set of dual-mode split-beam optical tweezers, which can be used to manually rotate a trapped and twisted red blood cell around the optical axis. Furthermore, we demonstrate that the split-beam optical tweezers can also stably trap and orient a birefringent polystyrene micro strip particle, which otherwise will self rotate at a varying speed along the structural principal axes, fast spin about the optical axis in a tilting pose, or precess like a gyroscope, in the original linearly polarized single-beam optical tweezers.
View Article and Find Full Text PDFWe exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.
View Article and Find Full Text PDFOpt Express
December 2008
We couple a variable-coherence light beam into a multimode optical fiber and observe the fiber cross-sectional images. The variation in the fiber imaging is explored as we change the degree of optical coherence of the incident light. Low coherence light is shown to be capable of improving the quality of the fiber images.
View Article and Find Full Text PDF