Cancer stem cells (CSCs) are cells that drive tumorigenesis, contributing to metastasis and cancer recurrence as well as resistance to chemotherapy of oral squamous cell carcinomas (OSCC). Therefore, approaches to target CSCs become the subject of intense research for cancer therapy. In this study, we demonstrated that isoliquiritigenin, a chalcone-type flavonoid isolated from licorice root, exhibited more toxicity in oral cancer stem cells (OSCC-CSCs) compared to normal cells.
View Article and Find Full Text PDFTumor-initiating cells (TICs) are defined as a specialized subset of cells with tumor-initiating capacity that can initiate tumor growth, tumor relapse and metastasis. In the present study, osteosarcoma TICs (OS-TICs) were isolated and enriched from the osteosarcoma U2OS and MG-63 cell lines using sphere formation assays and serum-depleted media. These enriched OS-TICs showed the expression of several typical cancer stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, cluster of differentiation (CD)117, Nestin and CD133, and the expression of ATP binding cassette subfamily G member 2, multidrug resistance protein 1 (MDR1) and dihydrofolate reductase (DHFR).
View Article and Find Full Text PDFTumor initiating cells (TICs) possessing cancer stemness were shown to be enriched after therapy, resulting in the relapse and metastasis of head and neck squamous cell carcinomas (HNC). An effective therapeutic approach suppressing the HNC-TICs would be a potential method to improve the treatments for HNC. We observed that the treatment of silibinin (SB) dose dependently down-regulated the ALDH1 activity, CD133 positivity, stemness signatures expression, self-renewal property, and chemoresistance in ALDH1+CD44+ HNC-TICs.
View Article and Find Full Text PDFBackground/purpose: Oral submucous fibrosis (OSF), a chronic progressive scarring disease, has been considered as a precancerous condition of oral mucosa. In this study, we investigated the functional role of Twist, an epithelial-mesenchymal transition (EMT) transcriptional factor, in myofibroblastic differentiation activity of OSF.
Methods: Arecoline, a major areca nut alkaloid, was used to explore whether expression of Twist could be changed dose-dependently in human primary buccal mucosal fibroblasts (BMFs).
Objectives: Metastasis is the most common cause of oral squamous cell carcinoma (OSCC)-related death. The physiological function of S100A4 in the pathogenesis of areca quid chewing-associated OSCC has not been uncovered.
Method: OSCC tissues from areca quid chewers were analyzed by immunohistochemistry for S100A4 expression.
Background: Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world. Previously, we enriched a subpopulation of OSCC-derived cancer stem cells (OSCC-CSCs), and identified CD133 as an OSCC-CSC marker.
Method: We determined the function of CD133 on chemosensitivity of oral cancer CSCs by silencing CD133.
Objectives: Sox2, a high-mobility-group DNA binding protein, is part of the key set of transcription factors that are involved in the maintenance of pluripotency and self-renewal in undifferentiated stem cells. A recent study has further suggested cancer stem cells (CSCs) are key contributors to radiochemoresistance and are responsible for oral squamous cell carcinoma (OSCC) progression. The aim of this study was to determine the emerging role of Sox2 in radiochemosensitivity of oral CSCs.
View Article and Find Full Text PDFBackground: Oral squamous cell carcinoma (OSCC) is the sixth most prevalent malignancy worldwide and the third most common cancer in developing nation. Most OSCC patients relapse within months after receiving treatment. Therefore, searching the biomarkers of recurrence is urgently required to improve OSCC patient survival.
View Article and Find Full Text PDFHuman dental pulp stem cells (DPSCs), unique mesenchymal stem cells (MSCs) type, exhibit the characteristics of self-renewal and multi-lineage differentiation capacity. Oct4 and Nanog are pluripotent genes. The aim of this study was to determine the physiological functions of Oct4 and Nanog expression in DPSCs.
View Article and Find Full Text PDFChemo-resistance is the major cause of high mortality in head and neck squamous cell carcinomas (HNSCC) in which HNSCC-derived cancer stem cells (CSCs) may be involved. Previously, we enriched a subpopulation of HNSCC-derived spheroid cells (SC) (HNSCC-SC) and identified Nanog as a CSCs marker. The aim of this study was to determine the role of Nanog in the chemosensitivity of HNSCC.
View Article and Find Full Text PDFBackground: Overexpression of Oct4, an important transcription factor of embryonic stem cells (ESC), has been reported in several cancers. The aim of this study was to determine the emerging role of Oct4 in oral squamous cell carcinoma (OSCC) both in vitro and in vivo.
Methodology/principal Finding: Tumourigenic activity and molecular mechanisms of Oct4 overexpression or knockdown by lentiviral infection in OSCC was investigated in vitro and in vivo.
Objectives/hypothesis: Chronic rhinosinusitis colonized with Pseudomonas aruginosa is difficult to treat and is related to biofilm formation. Repeated sinus surgery is often required for these patients. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an epithelium-secreted protein that is involved in innate immunity and has anti-Pseudomonas and antibiofilm functions.
View Article and Find Full Text PDFObjectives: Both epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties may be involved in metastasis, which contributes to the high mortality rate of patients with head and neck cancers (HNCs). However, the mechanisms through which the EMT transcription factors ZEB1 and ZEB2 regulate HNC are still unclear.
Methods: Tumor initiating capability of HNC-CH133(+) cells with ZEB1/2 knockdown or co-overexpression was presented in vitro and in vivo.
Scope: Recent reports have demonstrated that head and neck cancer-derived tumor-initiating cells (HNC-TICs) presented high tumorigenic, chemoradioresistant, metastatic properties, and were coupled with gain of epithelial-mesenchymal transition (EMT) characteristics. The aim of this study was to investigate the chemotherapeutic effect and regulatory mechanisms of resveratrol on HNC-TICs.
Methods And Results: We first observed that the treatment of resveratrol significantly downregulated the ALDH1 activity and CD44 positivity of head and neck cancer (HNC) cells in a dose-dependent manner (p < 0.
Background: Previously, we enriched a subpopulation of head and neck cancer-derived tumor initiating cells (HNC-TICs) presented high tumorigenic, chemo-radioresistant, and coupled with epithelial-mesenchymal transition (EMT) properties. The purpose of this study was to investigate the therapeutic effect and molecular mechanisms of quercetin on HNC-TICs.
Method: ALDH1 activity of head and neck cancer cells with quercetin treatment was assessed by the Aldefluor assay flow cytometry analysis.
Metastasis is the major cause of high mortality in head and neck squamous cell carcinoma (HNSCC), in which HNSCC-derived cancer stem cells (CSCs) may be involved. Several reports have coupled non-viral gene delivery with RNA interference (RNAi) to target specific genes in cancer cells. However, the delivery efficiency of RNAi is limited and remained to be improved.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is a prevalent cancer worldwide. Let-7 family has been shown to function as a tumor suppressor through regulating multiple oncogenic signaling. Recent study reported that combined underexpression of miR-205 and let-7d showed negative correlation with the survival prognosis of head and neck cancer patients.
View Article and Find Full Text PDFOcclusal stimuli and the periodontal healing of replanted teeth have been reported to be related. However, the mechanism for preventing dentoalveolar ankylosis remains unclear. Basic fibroblast growth factor (bFGF/FGF-2) is considered as a key factor in wound healing.
View Article and Find Full Text PDF