Enhancing the flame retardancy of electrolytes and the stability of lithium anodes is of great significance to improve the safety performance of lithium-sulfur (Li-S) batteries. It is well known that the most commonly used ether based electrolyte solvents in Li-S batteries have a lower flash point and higher volatility than the ester electrolyte solvents in Li-ion batteries. Hence, lithium-sulfur batteries have greater safety risks than lithium-ion batteries.
View Article and Find Full Text PDFLi-S batteries are considered as one of the most promising battery systems because of their large theoretical capacity and high energy density. However, the "shuttle effect" of soluble polysulfides and sluggish electrochemical redox kinetics of Li-S batteries could cause a broken electrode structure and poor electrochemical performance. Herein, a high-performance and stable Li-S battery has been demonstrated by employing organo-polysulfide chain modified acetylene black (ABPS) as the coating layer on the separator.
View Article and Find Full Text PDF