Publications by authors named "Fang Ju"

White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear.

View Article and Find Full Text PDF

The repair of critical-sized bone defects remains a major challenge for clinical orthopedic surgery. Here, we develop a surface biofunctionalized three-dimensional (3D) porous polyether-ether-ketone (PEEK) scaffold that can simultaneously promote osteogenesis and regulate macrophage polarization. The scaffold is created using polydopamine (PDA)-assisted immobilization of silk fibroin (SF) and the electrostatic self-assembly of nanocrystalline hydroxyapatite (nano-HA) on a 3D-printed porous PEEK scaffold.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of three antioxidants, selenium yeast capsule, vitamin E and vitamin C, alone or in combination, on the salivary glands of patients with differentiated thyroid cancer (DTC) treated with iodine-131 ( 131 I).

Methods: A total of 69 postoperative DTC patients were randomly divided into three groups: vitamin E combined with vitamin C group (21 cases); selenium yeast group (23 cases); and selenium yeast combined with vitamin C group (25 cases). Salivary gland functional changes were assessed by salivary gland dynamic imaging functional parameters in the enrolled patients before and 1 month after 131 I treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Recurrent pregnancy loss (RPL) is a complex issue with various causes, and roughly half of the cases remain unexplained; this study explores the role of iron metabolism genes in RPL.
  • Researchers analyzed gene expression data to identify key hub genes, specifically CISD2 and CYP17A1, linked to iron metabolism—both were found to have reduced expression in RPL samples.
  • The findings indicate that these genes could serve as potential diagnostic markers for RPL, with implications for understanding immune interactions and cellular processes involved in the condition.
View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeat activation (CRISPRa) technology has emerged as a precise genome editing tool for activating endogenous transgene expression. While it holds promise for precise cell modification, its translation into tissue engineering has been hampered by biosafety concerns and suboptimal delivery methods. To address these challenges, we have developed a CRISPRa non-viral gene delivery platform by immobilizing non-viral CRISPRa complexes into a biocompatible hydrogel/nanofiber (Gel/NF) composite scaffold.

View Article and Find Full Text PDF

The rhizosheath, or the layer of soil closely adhering to roots, can help plants to tolerate drought under moderate soil drying conditions. Rhizosheath formation is the result of poorly understood interactions between root exudates, microbes, and soil conditions. Here, we study the roles played by the soil microbiota in rhizosheath formation in barley (a dry crop).

View Article and Find Full Text PDF

Flavonoids are one of the most important bioactive components in litchi ( Sonn.) seeds and have broad-spectrum antiviral and antitumor activities. Litchi seeds have been shown to inhibit the proliferation of cancer cells and induce apoptosis, particularly effective against breast and liver cancers.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent mode of regulated cell death, is induced by lipid peroxidation, whose occurrence and execution are primarily controlled by metabolism of iron, lipids, amino acids and glutathione. In recent years, the fast-growing studies of ferroptosis in cancer have promoted its application in cancer therapy. So, this review focuses on the feasibility and characteristics of initiating ferroptosis for cancer therapy, as well as the main mechanism of ferroptosis.

View Article and Find Full Text PDF

In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability.

View Article and Find Full Text PDF

Fabrication of a hydrogel scaffold for full-thickness osteochondral defect repair remains a grand challenge. Developing layered and multiphasic hydrogels to mimic the intrinsic hierarchical structure of the osteochondral unit is a promising strategy. Chitosan-based hydrogels are widely applied for biomedical applications.

View Article and Find Full Text PDF

The clinical translation of bioactive scaffolds for the treatment of large segmental bone defects remains a grand challenge. The gene-activated matrix (GAM) combining gene therapy and tissue engineering scaffold offers a promising strategy for the restoration of structure and function of damaged or dysfunctional tissues. Herein, a gene-activated biomimetic composite scaffold consisting of an electrospun poly(ε-caprolactone) fiber sheath and an alginate hydrogel core which carried plasmid DNA encoding bone morphogenetic protein 2 (pBMP2) and vascular endothelial growth factor (pVEGF), respectively, is developed.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the effect of vitamin E and supragingival scaling with vitamin C on the salivary glands of patients with differentiated thyroid carcinoma after 131I treatment.

Methods: A total of 89 prospective patients with differentiated thyroid carcinoma were enrolled and randomly divided into the following groups: vitamin E group (n = 30, group A), vitamin C group (n = 30, group B) and supragingival scaling with vitamin C group (n = 29, group C). Using functional indices (e.

View Article and Find Full Text PDF
Article Synopsis
  • Platinum-based chemotherapy, specifically toripalimab combined with paclitaxel and cisplatin, was tested against a placebo in a phase 3 trial for patients with advanced esophageal squamous cell carcinoma (ESCC).
  • The results showed that those treated with toripalimab experienced significantly better progression-free survival (PFS) and overall survival (OS) compared to the placebo group.
  • Both treatment groups had similar rates of serious side effects, indicating that the toripalimab plus chemotherapy regimen is effective and has a manageable safety profile.
View Article and Find Full Text PDF

Regulating cell function and tissue formation by combining gene delivery with functional scaffolds to create gene-activated matrices (GAMs) is a promising strategy for tissue engineering. However, fabrication of GAMs with low cytotoxicity, high transfection efficiency, and long-term gene delivery properties remains a challenge. In this study, a non-viral DNA delivery nanocomplex was developed by modifying poly (D, L-lactic-co-glycolic acid)/polyethylenimine (PLGA/PEI) nanoparticles with the cell-penetrating peptide KALA.

View Article and Find Full Text PDF

Poor osteogenesis and implant-associated infection are the two leading causes of failure for dental and orthopedic implants. Surface design with enhanced osteogenesis often fails in antibacterial activity, or vice versa. Herein, a surface design strategy, which overcomes this trade-off via the synergistic effects of topographical micropatterning and a bilayered nanostructured metallic thin film is presented.

View Article and Find Full Text PDF

Three-dimensional (3D) porous zinc (Zn) with a moderate degradation rate is a promising candidate for biodegradable bone scaffolds. However, fabrication of such scaffolds with adequate mechanical properties remains a challenge. Moreover, the composition, crystallography and microstructure of the in vivo degradation products formed at or near the implant-bone interface are still not precisely known.

View Article and Find Full Text PDF

A 3D hierarchical carbon cloth/nitrogen-doped carbon nanowires/Ni@MnO (CC/N-CNWs/Ni@MnO ) nanocomposite electrode was rationally designed and prepared by electrodeposition. The N-CNWs derived from polypyrrole (PPy) nanowires on the carbon cloth have an open framework structure, which greatly increases the contact area between the electrode and electrolyte and provides short diffusion paths. The incorporation of the Ni layer between the N-CNWs and MnO is beneficial for significantly enhancing the electrical conductivity and boosting fast charge transfer as well as improving the charge-collection capacity.

View Article and Find Full Text PDF

Purpose: Although immunotherapies have resulted in durable clinical responses, not all tumor types have seen substantial benefit. Extensive recruitment and accumulation of immunosuppressive myeloid cells into the tumor tissues has been postulated as a major mechanism of resistance to immunotherapies. Strategies targeting on single immunosuppressive cell type, in combination with checkpoint inhibitors, have resulted in promising outcomes in animal studies.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) hydrogels are widely used for tissue regeneration. Nonetheless, a pure GelMA hydrogel cannot efficiently serve for cartilage regeneration because of weak mechanical properties and brittleness. In this study, we established a mussel-inspired strategy for tuning the mechanical properties of GelMA hydrogels by intercalating oligomers of dopamine methacrylate (ODMA) into the chain of GelMA.

View Article and Find Full Text PDF

Topographical cues play an important role in directing cell behavior, and thus, extensive research efforts have been devoted to fabrication of surface patterns and exploring the contact guidance effect. However, engineering high-resolution micropatterns directly onto metallic implants remains a grand challenge. Moreover, there still lacks evidence that allows translation of in vitro screening to in vivo tissue response.

View Article and Find Full Text PDF

Multiple ions codoping may effectively modulate physicochemical and biological properties of hydroxyapatite (HA) for diverse biomedical applications. This study synthesized strontium (Sr)-, fluorine (F)- doped, and Sr/F-codoped HA nanoparticles by a hydrothermal method, and investigated the effect of ion doping on characteristics of HA, including crystallinity, crystal size, lattice parameters, and substitution sites by experiments and simulation with density functional theory (DFT) methods. It was found that, Sr doping increased the lattice parameters of HA whereas F doping decreased these parameters.

View Article and Find Full Text PDF

Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method.

View Article and Find Full Text PDF

Adhesive hydrogels have gained popularity in biomedical applications, however, traditional adhesive hydrogels often exhibit short-term adhesiveness, poor mechanical properties and lack of antibacterial ability. Here, a plant-inspired adhesive hydrogel has been developed based on Ag-Lignin nanoparticles (NPs)triggered dynamic redox catechol chemistry. Ag-Lignin NPs construct the dynamic catechol redox system, which creates long-lasting reductive-oxidative environment inner hydrogel networks.

View Article and Find Full Text PDF

The design of hydrogels with adequate mechanical properties and excellent bioactivity, osteoconductivity, and capacity for osseointegration is essential to bone repair and regeneration. However, it is challenging to integrate all these properties into one bone scaffold. Herein, we developed a strong, tough, osteoconductive hydrogel by a facile one-step micellar copolymerization of acrylamide and urethacrylate dextran (Dex-U), followed by the in situ mineralization of hydroxyapatite (HAp) nanocrystals.

View Article and Find Full Text PDF