Publications by authors named "Fang Baishan"

The past 50 years have witnessed a massive expansion in the demand and application of pesticides. However, pesticides are difficult to be completely degraded without intervention hence the pesticide residue could pose a persistent threat to non-target organisms in many aspects. To aim at the problem of the abuse of pesticide products and excessive pesticide residues in the environment, chemical and biological degradation methods are widely developed but are scaled and insufficient to solve such a pollution.

View Article and Find Full Text PDF

κ-carrageenases are members of the glycoside hydrolase family 16 (GH16) that hydrolyze sulfated galactans in red algae, known as κ-carrageenans. In this study, a novel κ-carrageenase gene from the marine bacterium SM41 (RsCgk) was discovered via the genome mining approach. There are currently no reports on κ-carrageenase from the genus, and RsCgk shares a low identity (less than 65%) with κ- carrageenase from other genera.

View Article and Find Full Text PDF

The intestine is a potential location for berberine (BBR) to exert its therapeutic effects, but the understanding of the influences of BBR on the gut microbiota is limited. Through fermentation of human intestinal microbiota, we investigated the effects of BBR on microbiota composition and metabolism. The result indicated that BBR reduced the production of acetic acid and propionic acid and had no effect on the content of butyric acid.

View Article and Find Full Text PDF

Dietary bioactive lipids, one of the three primary nutrients, is not only essential for growth and provides nutrients and energy for life's activities but can also help to guard against disease, such as Alzheimer's and cardiovascular diseases, which further strengthen the immune system and maintain many body functions. Many microorganisms, such as yeast, algae, and marine fungi, have been widely developed for dietary bioactive lipids production. These biosynthetic processes were not limited by the climate and ground, which are also responsible for superiority of shorter periods and high conversion rate.

View Article and Find Full Text PDF

As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium ASY5.

View Article and Find Full Text PDF

With the advancement of science, technology, and productivity, the rapid development of industrial production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation of greenhouse gases and deterioration of global warming. Carbon neutrality is a balance between absorption and emissions achieved by minimizing carbon dioxide (CO) emissions from human social productive activity through a series of initiatives, including energy substitution and energy efficiency improvement. Then CO was offset through forest carbon sequestration and captured at last.

View Article and Find Full Text PDF

The systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided.

View Article and Find Full Text PDF

Biomarkers of disease, especially protein, show great potential for diagnosis and prognosis. For detecting a certain protein, a binding assay implementing antibodies is commonly performed. However, antibodies are not thermally stable and may cause false-positive when the sample composition is complicated.

View Article and Find Full Text PDF

Millions of tons of collagen-rich bovine bone are produced as byproducts of the consumption of beef. Hydrolyzing bovine bone collagen (BBC) is an effective measure for both increasing its added value and protecting the environment. In this study, a kind of recombinant bacterial collagenase mining from Bacillus cereus was successfully performed and applied to hydrolyze BBC to collagen-soluble peptides (CPP).

View Article and Find Full Text PDF

Background: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully.

Results: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker.

View Article and Find Full Text PDF

The sensing platform based on single-molecule measurements provides a new perspective for constructing ultrasensitive systems. However, most of these sensing platforms are unavailable for the accurate determination of target analytes. Herein, we demonstrate a conductance ratiometric strategy combing with the single-molecule conductance techniques for ultrasensitive and precise determination.

View Article and Find Full Text PDF

Graphene oxide-based nanomaterials are promising for enzyme immobilization due to the possibilities of functionalizing surface. Polyethylenimine-grafted graphene oxide was constructed as a novel scaffold for immobilization of formate dehydrogenase. Compared with free formate dehydrogenase and graphene oxide adsorbed formate dehydrogenase, thermostability, storage stability, and reusability of polyethylenimine-grafted graphene oxide-formate dehydrogenase were enhanced.

View Article and Find Full Text PDF
Article Synopsis
  • * Challenges in measuring glycerol and 1,3-PDO online can lead to waste and inefficiencies in the fermentation process.
  • * A new artificial neural network (ANN) model was developed to accurately predict concentrations of glycerol, 1,3-PDO, and biomass, offering a solution for online measurement during industrial processes.
View Article and Find Full Text PDF

The chiral feature is a critical factor for the efficacy and safety of many therapeutic agents. At present, about 57% of marketed drugs are chiral drugs and about 99% of purified natural products are chiral compounds. There has been a tremendous potential of functional microorganisms and biocatalysts derived from them for the bioconversion of synthetic chemicals into drugs with high enantio-, chemo-, and regio-selectivities.

View Article and Find Full Text PDF

Oxidation of formate to CO is catalyzed via the donation of electrons from formate dehydrogenase (FDH) to nicotinamide adenine dinucleotide (NAD), and thus the charge transport characteristics of FDH become essential but remain unexplored. Here, we investigated the charge transport through single-enzyme junctions of FDH using the scanning tunneling microscope break junction technique (STM-BJ). We found that the coupling of NAD with FDH boosts the charge transport by ∼2,100%, and the single-enzyme conductance highly correlates with the enzyme activity.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a brain-based neurodevelopmental disorder characterized by behavioral abnormalities. Accumulating studies show that the gut microbiota plays a vital role in the pathogenesis of ASD, and gut microbiota transplantation (GMT) is a promising technique for the treatment of ASD. In clinical applications of GMT, it is challenging to obtain effective transplants because of the high costs of donor selection and heterogeneity of donors' gut microbiota, which can cause different clinical responses.

View Article and Find Full Text PDF

Quorum quenching (QQ) enzymes, which degrade signaling molecules so as to disrupt the quorum sensing signaling process, have drawn much attention as alternative antimicrobial agents. However, the screening methods for evolution of such enzymes through constructing genetic circuits remain a challenge for its relatively high false positive rates caused by the higher basal expression level of the naturally acquired promoter. Thus, we presented an improved genetic circuit by introducing an artificial hybrid promoter P combining P originated from lactose promoter with QS regulatory promoter P to control the expression of reporter gene rfp.

View Article and Find Full Text PDF

NAD(P)H-dependent enzymes are ideal biocatalysts for the industrial production of chiral compounds, such as chiral alcohols, chiral amino acids, and chiral amines; however, efficient strategies for the regeneration of coenzyme are expected as costly of the coenzymes. Herein, a solvent-tolerant isopropanol dehydrogenase (IDH) showing lower similarity (37%) with other proteins was obtained and characterized. The enzyme exhibits high catalysis ability of its substrates methanol, ethanol, ethylene glycol, glycerol, isopropanol, n-butanol, isobutanol, and acetone.

View Article and Find Full Text PDF

The human intestinal microbiota has an important role in the maintenance of human health and disease pathogenesis. The aim of this research was to investigate the impact of four media on human intestinal microbiota metabolite and composition changes, we performed in vitro batch culture using intestinal microbiota samples from three fecal microbiota transplantation (FMT) donors. After 48 h culture, gut microbiota medium (GMM) had the highest production of acetic acid (73.

View Article and Find Full Text PDF

Firefly luciferase is a prominent reporter on molecular imaging with the advantage of longer wavelength on light emission and the ATP linear correlation, which makes it useful in most of current bioluminescence imaging model. However, the utility of this biomaterial was limited by the signal intensity and stability which are respectively affected by enzyme activity and substrate consumption. This study demonstrated a series of novel synthetic bifunctional enzyme complex of Firefly luciferase (Fluc) and Luciferin-regenerating enzyme (LRE).

View Article and Find Full Text PDF

A bioinspired strategy for the synthesis of supramolecular and biocatalytical materials was developed base on protein-protein supramolecular interaction and genetic engineering. Formate dehydrogenase (FDH) and its functional fragments were separately fused to form a multi-function domain. The fusion proteins and functional fragments self-assembled into the expanded and controllable supramolecular interaction networks.

View Article and Find Full Text PDF

Firefly luciferase (Fluc) has been widely used as a bioluminescent monitor. The ATP linear correlation and exogenous luciferin requirement make it useful in most of current imaging systems. However, the utility of this reporter was still limited by the intensity and decay of the luminescent signal, and the active site and structure of enzyme including the relevant substrate channeling region.

View Article and Find Full Text PDF

As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp.

View Article and Find Full Text PDF