Publications by authors named "Fang'ai Liu"

Missing modality sentiment analysis is a prevalent and challenging issue in real life. Furthermore, the heterogeneity of multimodality often leads to an imbalance in optimization when attempting to optimize the same objective across all modalities in multimodal networks. Previous works have consistently overlooked the optimization imbalance of the network in cases when modalities are absent.

View Article and Find Full Text PDF

Sulphur dioxide is one of the most common air pollutants, forming acid rain and other harmful substances in the atmosphere, which can further damage our ecosystem and cause respiratory diseases in humans. Therefore, it is essential to monitor the concentration of sulphur dioxide produced in industrial processes in real-time to predict the concentration of sulphur dioxide emissions in the next few hours or days and to control them in advance. To address this problem, we propose an AR-LSTM analytical forecasting model based on ARIMA and LSTM.

View Article and Find Full Text PDF

Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on the task of answering multiple-choice questions regarding a video-subtitle-QA representation by fusion of attention and self-attention between each modality.

View Article and Find Full Text PDF

Click-through rate prediction has become a hot research direction in the field of advertising. It is important to build an effective CTR prediction model. However, most existing models ignore the factor that the sequence is composed of sessions, and the user behaviors are highly correlated in each session and are not relevant across sessions.

View Article and Find Full Text PDF

Click-through rate prediction, which aims to predict the probability of the user clicking on an item, is critical to online advertising. How to capture the user evolving interests from the user behavior sequence is an important issue in CTR prediction. However, most existing models ignore the factor that the sequence is composed of sessions, and user behavior can be divided into different sessions according to the occurring time.

View Article and Find Full Text PDF

Identification of the most influential spreaders that maximize information propagation in social networks is a classic optimization problem, called the influence maximization (IM) problem. A reasonable diffusion model that can accurately simulate information propagation in social networks is the key step to efficiently solving the IM problem. Synergism of neighbor nodes plays an important role in information propagation dynamics.

View Article and Find Full Text PDF

Click-through rate prediction is critical in Internet advertising and affects web publisher's profits and advertiser's payment. The traditional method of obtaining features using feature extraction did not consider the sparseness of advertising data and the highly nonlinear association between features. To reduce the sparseness of data and to mine the hidden features in advertising data, a method that learns the sparse features is proposed.

View Article and Find Full Text PDF