Publications by authors named "Fanchao Li"

Hypoxia-induced apoptosis of bone marrow mesenchymal stem cells (BMSCs) limits the efficacy of their transplantation for steroid-induced osteonecrosis of the femoral head (SONFH). As apoptosis and RNA methylation are closely related, exploring the role and mechanism of RNA methylation in hypoxic apoptosis of BMSCs is expected to identify new targets for transplantation of BMSCs for SONFH and enhance transplantation efficacy. We performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA-seq on a hypoxia-induced apoptosis BMSC model and found that the RNA methyltransferase-like 3 (METTL3) is involved in hypoxia-induced BMSC apoptosis.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cell (BMSC) transplantation is a promising regenerative therapy; however, the survival rate of BMSCs after transplantation is low. Oxidative stress is one of the main reasons for the high apoptosis rate of BMSCs after transplantation, so there is an urgent need to explore the mechanism of oxidative stress-induced apoptosis of BMSCs. Our previous transcriptome sequencing results suggested that the expression of P53-induced nuclear protein 1 (TP53INP1) and the tumor suppressor P53 (P53) was significantly upregulated during the process of oxidative stress-induced apoptosis of BMSCs.

View Article and Find Full Text PDF

The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH.

View Article and Find Full Text PDF