Publications by authors named "Fan-Mao Kong"

Large-diameter, tall-stature, and big-crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large-diameter, tall-stature, and big-crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e.

View Article and Find Full Text PDF

Most of the previous studies have shown that the relationship between functional diversity and aboveground biomass is unpredictable in natural tropical forests, and hence also contrary to the predictions of niche complementarity effect. However, the direct and indirect effects of functional diversity on aboveground biomass via tree crown complementarity in natural forests remain unclear, and this potential ecological mechanism is yet to be understood across large-scale ecological gradients. Here, we hypothesized that tree crown complementarity would link positive functional diversity and aboveground biomass due to increasing species coexistence through efficient capture and use of available resources in natural tropical forests along large-scale ecological gradients.

View Article and Find Full Text PDF

Climatic water availability is a key spatial driver of species distribution patterns in natural forests. Yet, we do not fully understand the importance of climatic water availability relative to temperature, and climate relative to edaphic factors for multiple biotic attributes across large-scale elevational gradients in natural forests. Here, we modelled multiple abiotic factors (elevation, climate, and edaphic factors) with each of the taxonomic-related (Shannon's species diversity, species richness, species evenness, and Simpson's dominance) and tree size or biomass-related (individual tree size variation, functional dominance and divergence, and aboveground biomass) biotic attributes through boosted regression trees (BRT) models, using biophysical data from 247,691 trees across 907 plots in tropical forests in Hainan Island of Southern China.

View Article and Find Full Text PDF