Publications by authors named "Fan-Gang Zeng"

A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor.

View Article and Find Full Text PDF

Background: Cochlear implants have helped over one million individuals restore functional hearing globally, but their clinical utility in suppressing tinnitus has not been firmly established.

Methods: In a decade-long study, we examined longitudinal effects of cochlear implants on tinnitus in 323 post-lingually deafened individuals including 211 with pre-existing tinnitus and 112 without tinnitus. The primary endpoints were tinnitus loudness and tinnitus handicap inventory.

View Article and Find Full Text PDF

Although the telephone band (0.3-3 kHz) provides sufficient information for speech recognition, the contribution of the non-telephone band (<0.3 and >3 kHz) is unclear.

View Article and Find Full Text PDF

Objective: Develop a novel and highly efficient framework that decodes Inferior Colliculus (IC) neural activities for phoneme recognition.

Methods: We propose using Hyperdimensional Computing (HDC) to support an efficient phoneme recognition algorithm, in contrast to widely applied Deep Neural Networks (DNN). The high-dimensional representation and operations in HDC are rooted in human brain functionalities and naturally parallelizable, showing the potential for efficient neural activity analysis.

View Article and Find Full Text PDF

Attention plays an important role in not only the awareness and perception of tinnitus but also its interactions with external sounds. Recent evidence suggests that attention is heightened in the tinnitus brain, likely as a result of relatively local cortical changes specific to deafferentation sites or global changes that help maintain normal cognitive capabilities in individuals with hearing loss. However, most electrophysiological studies have used passive listening paradigms to probe the tinnitus brain and produced mixed results in terms of finding a distinctive biomarker for tinnitus.

View Article and Find Full Text PDF

Introduction: Objectively predicting speech intelligibility is important in both telecommunication and human-machine interaction systems. The classic method relies on signal-to-noise ratios (SNR) to successfully predict speech intelligibility. One exception is clear speech, in which a talker intentionally articulates as if speaking to someone who has hearing loss or is from a different language background.

View Article and Find Full Text PDF

Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience.

View Article and Find Full Text PDF

Cochlear implants have been the most successful neural prosthesis, with one million users globally. Researchers used the source-filter model and speech vocoder to design the modern multi-channel implants, allowing implantees to achieve 70%-80% correct sentence recognition in quiet, on average. Researchers also used the cochlear implant to help understand basic mechanisms underlying loudness, pitch, and cortical plasticity.

View Article and Find Full Text PDF

Purpose: With the rapid development of new technologies and resources, many avenues exist to adapt and grow as a profession. Embracing change can lead to growth, evolution, and new opportunities. Audiologists have the potential to harness many of these technological advancements to improve patient health care.

View Article and Find Full Text PDF

Use of artificial intelligence (AI) is a burgeoning field in otolaryngology and the communication sciences. A virtual symposium on the topic was convened from Duke University on October 26, 2020, and was attended by more than 170 participants worldwide. This review presents summaries of all but one of the talks presented during the symposium; recordings of all the talks, along with the discussions for the talks, are available at https://www.

View Article and Find Full Text PDF

Animal studies have discovered that noise, even at levels that produce no permanent threshold shift, may cause cochlear damage and selective nerve degeneration. A hallmark of such damage, or synaptopathy, is recovered threshold but reduced suprathreshold amplitude for the auditory brainstem response (ABR) wave I. The objective of the present study is to evaluate whether the ABR wave I amplitude or slope can be used to diagnose tinnitus in humans.

View Article and Find Full Text PDF

The importance of tele-audiology has been heightened by the current COVID-19 pandemic. The present article reviews the current state of tele-audiology practice while presenting its limitations and opportunities. Specifically, this review addresses: (1) barriers to hearing healthcare, (2) tele-audiology services, and (3) tele-audiology key issues, challenges, and future directions.

View Article and Find Full Text PDF

While noninvasive brain stimulation is convenient and cost effective, its utility is limited by the substantial distance between scalp electrodes and their intended neural targets in the head. The tympanic membrane, or eardrum, is a thin flap of skin deep in an orifice of the head that may serve as a port for improved efficiency of noninvasive stimulation. Here we chose the cochlea as a target because it resides in the densest bone of the skull and is adjacent to many deep-brain-stimulation structures.

View Article and Find Full Text PDF

Because hearing loss is a high-risk factor for cognitive decline, tinnitus, a comorbid condition of hearing loss, is often presumed to impair cognition. The present cross-sectional study aimed to delineate the interaction of tinnitus and cognition in the elderly with and without hearing loss after adjusting for covariates in race, age, sex, education, pure tone average, hearing aids, and physical well-being. Participants included 643 adults (60-69 years old; 51.

View Article and Find Full Text PDF

Wenhui Mao and coauthors discuss possible implications of the COVID-19 pandemic for health aspirations in low- and middle-income countries.

View Article and Find Full Text PDF

Electrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination.

View Article and Find Full Text PDF

Tinnitus is a phantom auditory sensation in the absence of external sounds, while hyperacusis is an atypical sensitivity to external sounds that leads them to be perceived as abnormally loud or even painful. Both conditions may reflect the brain's over-compensation for reduced input from the ear. The present work differentiates between two compensation models: The additive central noise compensates for hearing loss and is likely to generate tinnitus, whereas the multiplicative central gain compensates for hidden hearing loss and is likely to generate hyperacusis.

View Article and Find Full Text PDF

To examine difficulties experienced by cochlear implant (CI) users when perceiving non-native speech, intelligibility of non-native speech was compared in conditions with single and multiple alternating talkers. Compared to listeners with normal hearing, no rapid talker-dependent adaptation was observed and performance was approximately 40% lower for CI users following increased exposure in both talker conditions. Results suggest that lower performance for CI users may stem from combined effects of limited spectral resolution, which diminishes perceptible differences across accents, and limited access to talker-specific acoustic features of speech, which reduces the ability to adapt to non-native speech in a talker-dependent manner.

View Article and Find Full Text PDF

Psychophysical laws quantitatively relate perceptual magnitude to stimulus intensity. While most people have accepted Stevens's power function as the psychophysical law, few believe in Fechner's original idea using just-noticeable-differences (jnd) as a constant perceptual unit to educe psychophysical laws. Here I present a unified theory in hearing, starting with a general form of Zwislocki's loudness function (1965) to derive a general form of Brentano's law.

View Article and Find Full Text PDF

Tinnitus is a sound heard by 15% of the general population in the absence of any external sound. Because external sounds can sometimes mask tinnitus, tinnitus is assumed to affect the perception of external sounds, leading to hypotheses such as "tinnitus filling in the temporal gap" in animal models and "tinnitus inducing hearing difficulty" in human subjects. Here we compared performance in temporal, spectral, intensive, masking and speech-in-noise perception tasks between 45 human listeners with chronic tinnitus (18 females and 27 males with a range of ages and degrees of hearing loss) and 27 young, normal-hearing listeners without tinnitus (11 females and 16 males).

View Article and Find Full Text PDF

Objectives: Electro-acoustic stimulation (EAS) enhances speech and music perception in cochlear-implant (CI) users who have residual low-frequency acoustic hearing. For CI users who do not have low-frequency acoustic hearing, tactile stimulation may be used in a similar fashion as residual low-frequency acoustic hearing to enhance CI performance. Previous studies showed that electro-tactile stimulation (ETS) enhanced speech recognition in noise and tonal language perception for CI listeners.

View Article and Find Full Text PDF

Rationale: Electrophysiological studies show that systemic nicotine narrows frequency receptive fields and increases gain in neural responses to characteristic frequency stimuli. We postulated that nicotine enhances related auditory processing in humans.

Objectives: The main hypothesis was that nicotine improves auditory performance.

View Article and Find Full Text PDF

Objectives: Electric stimulation is used to treat a number of neurologic disorders such as epilepsy and depression. However, delivering the required current to far-field neural targets is often ineffective because of current spread through low-impedance pathways. Here, the specific aims are to develop an empirical measure for current passing through the human head and to optimize stimulation strategies for targeting deeper structures, including the auditory nerve, by utilizing the cochlear implant (CI).

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Fan-Gang Zeng"

  • - Fan-gang Zeng's recent research focuses on the intersections of auditory perception, speech intelligibility, and advanced computational techniques, such as Hyperdimensional Computing, to enhance phoneme recognition from neural signals.
  • - His studies explore the impact of attention-related cortical responses as potential biomarkers for tinnitus, emphasizing the need for novel approaches in understanding auditory phantom perception and its link to cognitive processes.
  • - Zeng also investigates the objective prediction of speech intelligibility in various communication contexts, highlighting the importance of adjusting speech modulation rates, and validating innovative technologies such as smart wearables for audiometric assessments.