Publications by authors named "Fan Xiu Zhu"

IRF-7 is the master regulator of type I interferon-dependent immune responses controlling both innate and adaptive immunity. Given the significance of IRF-7 in the induction of immune responses, many viruses have developed strategies to inhibit its activity to evade or antagonize host antiviral responses. We previously demonstrated that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu, F.

View Article and Find Full Text PDF

Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection.

View Article and Find Full Text PDF

Open reading frame (ORF) 45 of Kaposi's sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen.

View Article and Find Full Text PDF

Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an immediate-early protein. This protein is also present in virions as a tegument protein. ORF45 protein interacts with interferon regulatory factor 7 (IRF-7) and inhibits virus-induced type I interferon production by blocking activation of IRF-7.

View Article and Find Full Text PDF

The proteins that compose a herpesvirus virion are thought to contain the functional information required for de novo infection, as well as virion assembly and egress. To investigate functional roles of Kaposi's sarcoma-associated herpesvirus (KSHV) virion proteins in viral productive replication and de novo infection, we attempted to identify virion proteins from purified KSHV by a proteomic approach. Extracellular KSHV virions were purified from phorbol-12-tetradecanoate-13-acetate-induced BCBL-1 cells through double-gradient ultracentrifugation, and their component proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

View Article and Find Full Text PDF

Herpesvirus lytic DNA replication requires both the cis-acting element, the origin, and trans-acting factors such as virally encoded origin-binding protein and DNA replication enzymes. Recently, the origins of lytic DNA replication (ori-Lyt) in Kaposi's sarcoma-associated herpesvirus (KSHV) have been identified and a virally encoded bZip protein, K8, has been shown to specifically bind to the origin. To map cis-acting elements within KSHV ori-Lyt that are required for DNA replication function and to define the nature of K8 bZip protein binding to the origin, we constructed consecutive internal deletion mutations across the core domain of a KSHV ori-Lyt and tested them for DNA replication function in a transient replication assay.

View Article and Find Full Text PDF

Herpesviruses utilize different origins of replication during lytic versus latent infection. Latent DNA replication depends on host cellular DNA replication machinery, whereas lytic cycle DNA replication requires virally encoded replication proteins. In lytic DNA replication, the lytic origin (ori-Lyt) is bound by a virus-specified origin binding protein (OBP) that recruits the core replication machinery.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF45 is encoded by an immediate-early gene in the KSHV genome. This protein was recently shown to interact with interferon regulatory factor 7 and inhibit virus-mediated alpha/beta interferon induction (Zhu et al., Proc.

View Article and Find Full Text PDF

Interferons constitute the earliest immune response against viral infection. They elicit antiviral effects as well as multiple biological responses involved in cell growth regulation and immune activation. Because the interferon-induced cellular antiviral response is the primary defense mechanism against viral infection, many viruses have evolved strategies to antagonize the inhibitory effects of interferon.

View Article and Find Full Text PDF