Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1.
View Article and Find Full Text PDFCortical neurospheres (NSPs) derived from human pluripotent stem cells (hPSC), have proven to be a successful platform to investigate human brain development and neuro-related diseases. Currently, many of the standard hPSC neural differentiation media, use concentrations of glucose (approximately 17.5-25 mM) and insulin (approximately 3.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2020
Ambient air pollution is considered a major environmental health threat to pregnant women. Our previous work has shown an association between exposure to airborne particulate matter (PM) and an increased risk of developing pre-eclamspia. It is now recognized that many pregnancy complications are due to underlying placental dysfunction, and this tissue plays a pivotal role in pre-eclamspia.
View Article and Find Full Text PDFPreeclampsia (PE) has been associated with placental dysfunction, resulting in fetal hypoxia, accelerated erythropoiesis, and increased erythroblast count in the umbilical cord blood (UCB). Although the detailed effects remain unknown, placental dysfunction can also cause inflammation, nutritional, and oxidative stress in the fetus that can affect erythropoiesis. Here, we compared the expression of surface adhesion molecules and the erythroid differentiation capacity of UCB hematopoietic stem/progenitor cells (HSPCs), UCB erythroid profiles along with the transcriptome and proteome of these cells between male and female fetuses from PE and normotensive pregnancies.
View Article and Find Full Text PDFBackground: Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality worldwide. Although predictive multiparametric screening is being developed, it is not applicable to nulliparous women, and is not applied to low-risk women. As PE is considered a heterogenous disorder, it is unlikely that any single multiparametric screening protocol containing a small group of biomarkers could have the required accuracy to predict all PE subgroups.
View Article and Find Full Text PDFESRP1 regulates alternative splicing, producing multiple transcripts from its target genes in epithelial tissues. It is upregulated during mesenchymal to epithelial transition associated with reprogramming of fibroblasts to iPS cells and has been linked to pluripotency. Mouse fetal germ cells are the founders of the adult gonadal lineages and we found that Esrp1 mRNA was expressed in both male and female germ cells but not in gonadal somatic cells at various stages of gonadal development (E12.
View Article and Find Full Text PDFDuring the pregnancy associated syndrome preeclampsia (PE), there is increased release of placental syncytiotrophoblast extracellular vesicles (STBEVs) and free foetal haemoglobin (HbF) into the maternal circulation. In the present study we investigated the uptake of normal and PE STBEVs by primary human coronary artery endothelial cells (HCAEC) and the effects of free HbF on this uptake. Our results show internalization of STBEVs into primary HCAEC, and transfer of placenta specific miRNAs from STBEVs into the endoplasmic reticulum and mitochondria of these recipient cells.
View Article and Find Full Text PDFPreeclampsia (PE) is associated with increased fetal hemoglobin (HbF) in the maternal circulation but its source is unknown. To investigate whether excessive HbF is produced in the placenta or the fetus, the concentration of HbF (cHbF) in the arterial and venous umbilical cord blood (UCB) was compared in 15825 normotensive and 444 PE pregnancies. The effect of fetal gender on cHbF was also evaluated in both groups.
View Article and Find Full Text PDFTob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown.
View Article and Find Full Text PDFThe first lineage allocation during mouse development forms the trophectoderm and inner cell mass, in which Cdx2 and Pou5f1 display reciprocal expression. Yet Cdx2 is not required for trophectoderm specification in other mammals, such as the human, cow, pig, or in two marsupials, the tammar and opossum. The role of Cdx2 and Pou5f1 in the first lineage allocation of Sminthopsis macroura, the stripe-faced dunnart, is unknown.
View Article and Find Full Text PDFThe literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions.
View Article and Find Full Text PDFVarious studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci.
View Article and Find Full Text PDFEndoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation.
View Article and Find Full Text PDFBackground: Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content.
View Article and Find Full Text PDFEndoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation.
View Article and Find Full Text PDFS100 proteins are calcium-binding proteins involved in controlling diverse intracellular and extracellular processes such as cell growth, differentiation, and antimicrobial function. We recently identified a S100-like cDNA from the tammar wallaby (Macropus eugenii) stomach. Phylogentic analysis shows wallaby S100A19 forms a new clade with other marsupial and monotreme S100A19, while this group shows similarity to eutherian S100A7 and S100A15 genes.
View Article and Find Full Text PDFTwo lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations.
View Article and Find Full Text PDFThe 2nd Royan Institute International Summer School was built around the topic of stem cells and grounding in the discipline of developmental biology. The meeting provided not only direct transfer of technical and intellectual information, the normal process in scientific meetings, but was also a forum for the exchange of personal ideas of science as a creative pursuit. This summer school introduced aspiring young Iranian scientists to international researchers and exposed the latter to a rich culture that highly values learning and education, attested by the confident, intelligent young men and women who asked probing questions and who were eager to participate in the workshops.
View Article and Find Full Text PDFSuccessful maintenance, survival and maturation of gametes rely on bidirectional communication between the gamete and its supporting cells. Before puberty, factors from the gamete and its supporting cells are necessary for spermatogonial stem cell and primordial follicle oocyte maintenance. Following gametogenesis, gametes rely on factors and nutrients secreted by cells of the reproductive tracts, the epididymis and/or oviduct, to complete maturation.
View Article and Find Full Text PDFBackground: ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes.
View Article and Find Full Text PDFRecent studies of PAT proteins in Drosophila and Xenopus have revealed significant roles for this family of proteins in the polarized transport of lipid droplets and maternal determinants during early embryogenesis. In mammals, PAT proteins are known to function mainly in lipid metabolism, yet research has yet to establish a role for PAT proteins in mammalian embryogenesis. Oocytes and early cleavage stages in Sminthopsis macroura show obvious polarized cytoplasmic distribution of organelles, somewhat similar to Drosophila and Xenopus, suggesting that a PAT protein may also be involved in S.
View Article and Find Full Text PDFMutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes.
View Article and Find Full Text PDF