When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning; this phenomenon has been a mystery in nuclear physics for over 40 years. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum.
View Article and Find Full Text PDFA new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization.
View Article and Find Full Text PDFEven mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb β decays have been determined using the total absorption γ-ray spectroscopy technique.
View Article and Find Full Text PDFThe antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy.
View Article and Find Full Text PDFTotal absorption spectroscopy is used to investigate the β-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy.
View Article and Find Full Text PDFIn this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range.
View Article and Find Full Text PDFThe Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.
View Article and Find Full Text PDFInelastic scattering of 40Ca on 40Ca at 50 MeV/A has been measured in coincidence with protons at the GANIL facility. The SPEG spectrometer was associated with 240 CsI(Tl) scintillators of the INDRA 4pi array, allowing for the measurement of complete decay events. The missing energy method was applied to these events.
View Article and Find Full Text PDFTo investigate the behavior of the N = 14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2(1)+ inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured using the MUr à STrip detector array at the Grand Accélérateur National d'Ions Lourds facility. A deformation parameter beta(p,p') = 0.26 +/- 0.
View Article and Find Full Text PDFThe dipole strength distribution above the one-neutron separation energy was measured in the unstable 130Sn and the double-magic 132Sn isotopes. The results were deduced from Coulomb dissociation of secondary Sn beams with energies around 500 MeV/nucleon, produced by in-flight fission of a primary 238U beam. In addition to the giant dipole resonance, a resonancelike structure ("pygmy resonance") is observed at a lower excitation energy around 10 MeV exhausting a few percent of the isovector E1 energy-weighted sum rule.
View Article and Find Full Text PDFThe prevalence of exclusive breast-feeding among infants 0 to 3 months of age in a community was contrasted with the prevalence of breast-feeding among infants hospitalized for the presence of presumed or established infections. During a one-year period, 136 infants, 0 to 3 months of age, were admitted to the hospital. Among the hospitalized group, only 11.
View Article and Find Full Text PDF