Objective: To develop an unembalmed human cadaveric lower limb model as a more realistic environment for testing self-expanding nitinol stents. We studied conformational changes and strain induced by knee flexion in nitinol stents deployed in the popliteal artery (PA).
Methods: One Lifestent® each was deployed into one limb of four cadavers (control group), while the contralateral leg received a different stent (Absolute®, Protégé Everflex®, Supera®, and Gore Viabahn®).
A change in hamstring strength and activation is typically seen after injuries or invasive surgeries such as anterior cruciate reconstruction or total knee replacement. While many studies have investigated the influence of isometric increases in hamstring load on knee joint kinematics, few have quantified the change in kinematics due to a variation in medial to lateral hamstring force ratio. This study examined the changes in knee joint kinematics on eight cadaveric knees during an open-chain deep knee bend for six different loading configurations: five loaded hamstring configurations that varied the ratio of a total load of 175 N between the semimembranosus and biceps femoris and one with no loads on the hamstring.
View Article and Find Full Text PDFIn vitro testing of the human knee provides valuable insight that contributes to further understanding knee biomechanics. Cadaveric testing correlates well with clinical trials because the tissue has similar properties to that of live subjects. In addition, in vitro testing allows studies to be performed that would otherwise be unethical to evaluate in vivo.
View Article and Find Full Text PDFUnderstanding the contribution of the soft-tissues to total joint constraint (TJC) is important for predicting joint kinematics, developing surgical procedures, and increasing accuracy of computational models. Previous studies on the collateral ligaments have focused on quantifying strain and tension properties under discrete loads or kinematic paths; however, there has been little work to quantify collateral ligament contribution over a broad range of applied loads and range of motion (ROM) in passive constraint. To accomplish this, passive envelopes were collected from nine cadaveric knees instrumented with implantable pressure transducers (IPT) in the collateral ligaments.
View Article and Find Full Text PDF