Background & Aims: MRI guidance offers better lesion targeting for microwave ablation of liver lesions with higher soft-tissue contrast, as well as the possibility of real-time thermometry. This study aims to evaluate the correlation of real-time MR thermometry-predicted lesion volume with the ablation zone in postprocedural first-day images.
Methods: This single-center retrospective analysis evaluated prospectively included patients who underwent MRI-guided microwave ablation with real-time thermometry between December 2020 and July 2023.
Purpose: The primary purpose of this study was to evaluate the accuracy of an MR-thermometry sequence for monitoring prostate temperature. The secondary purposes were to analyze clinical and technical factors that may affect accuracy and testing the method in a realistic setting, with MR-guided Laser ablation on an ex vivo muscle sample.
Materials And Methods: An ex vivo muscle sample was subjected to Laser ablation while using a two-dimensional multislice segmented echo planar imaging sequence for MR thermometry.
Background: Quantitative real-time MRI-based temperature mapping techniques are hampered by abdominal motion. Intrascan motion can be reduced by rapid acquisition sequences such as 2D echo planar imaging (EPI), and inter-scan organ displacement can be compensated by image processing such as optical flow (OF) algorithms. However, motion field estimation can be seriously affected by local variation of signal intensity on magnitude images inherent to tissue heating, potentially leading to erroneous temperature estimates.
View Article and Find Full Text PDFBackground: Clinical Laser-Induced Thermotherapy (LITT) currently lacks precise control of tissue temperature increase during the procedure. This study presents a new method to automatically regulate the maximum temperature increase in vivo at different positions by adjusting LITT power delivered by multiple laser probes using real-time volumetric MR-thermometry.
Methods: The regulation algorithm was evaluated in vivo on a pig leg muscle.
Background: Interventional magnetic resonance imaging (MRI) can provide a comprehensive setting for microwave ablation of tumors with real-time monitoring of the energy delivery using MRI-based temperature mapping. The purpose of this study was to quantify the accuracy of three-dimensional (3D) real-time MRI temperature mapping during microwave heating in vitro by comparing MRI thermometry data to reference data measured by fiber-optical thermometry.
Methods: Nine phantom experiments were evaluated in agar-based gel phantoms using an in-room MR-conditional microwave system and MRI thermometry.
This single-center study administered MIJ821 (onfasprodil) as an intravenous infusion to healthy volunteers and included two parts: a single ascending dose study (Part 1) and a repeated intravenous dose study (Part 2). Primary objective was to evaluate the safety and tolerability of single ascending intravenous doses infused over a 40-min period and of two repeated doses (1 week apart) of MIJ821 in healthy volunteers. Secondary objectives were to assess the pharmacokinetics of MIJ821 after intravenous infusion in Part 1 and Part 2 of the study.
View Article and Find Full Text PDFIntroduction: Less than half of service members with a behavioral health (BH) problem seek care. Soldiers may avoid seeking needed care because of concerns related to being placed on a duty-limiting profile and the related medical disclosures that follow.
Materials And Methods: This study used a retrospective population-based design to identify all new BH diagnoses across the U.
Precise control of tissue temperature during Laser-Induced Thermotherapy (LITT) procedures has the potential to improve the clinical efficiency and safety of such minimally invasive therapies. We present a method to automatically regulate in vivo the temperature increase during LITT using real-time rapid volumetric Magnetic Resonance thermometry (8 slices acquired every second, with an in-plane resolution of 1.4 mmx1.
View Article and Find Full Text PDFHuntington's Disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the huntingtin (HTT) gene. The mutant HTT (mHTT) protein causes neuronal dysfunction, causing progressive motor, cognitive and behavioral abnormalities. Current treatments for HD only alleviate symptoms, but cerebral spinal fluid (CSF) or central nervous system (CNS) delivery of antisense oligonucleotides (ASOs) or virus vectors expressing RNA-induced silencing (RNAi) moieties designed to induce mHTT mRNA lowering have progressed to clinical trials.
View Article and Find Full Text PDFObjectives: The T longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion.
View Article and Find Full Text PDFPurpose: To develop a Compressed Sensing (CS)-MP2RAGE sequence to drastically shorten acquisition duration and then detect and measure the T of brain metastases in mice at 7 T.
Methods: The encoding trajectory of the standard Cartesian MP2RAGE sequence has been modified (1) to obtain a variable density Poisson disk under-sampling distribution along the k -k plane, and (2) to sample the central part of the k-space exactly at TI and TI inversion times. In a prospective study, the accuracy of the T measurements was evaluated on phantoms containing increasing concentrations of gadolinium.
1. AFQ056 phenotyping results indicate that CYP1A1 is responsible for the formation of the oxidative metabolite, M3. In line with the predominant assumption that CYP1A1 is mainly expressed in extrahepatic tissues, only traces of M3 were detected in hepatic systems.
View Article and Find Full Text PDFThe chemical modification 2'-O-methyl of nucleosides is often used to increase siRNA stability towards nuclease activities. However, the metabolic fate of modified nucleosides remains unclear. Therefore, the aim of this study was to determine the mass balance, pharmacokinetic, and absorption, distribution, metabolism, and excretion (ADME)-properties of tritium-labeled 2'-O-methyluridine, following a single intravenous dose to male CD-1 mice.
View Article and Find Full Text PDFBackground And Purpose: Inhaled amiloride, a blocker of the epithelial sodium channel (ENaC), enhances mucociliary clearance (MCC) in cystic fibrosis (CF) patients. However, the dose of amiloride is limited by the mechanism-based side effect of hyperkalaemia resulting from renal ENaC blockade. Inhaled ENaC blockers with a reduced potential to induce hyperkalaemia provide a therapeutic strategy to improve mucosal hydration and MCC in the lungs of CF patients.
View Article and Find Full Text PDFAbsorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques.
View Article and Find Full Text PDFThe gaseous olefin ethylene (ET) is metabolized in mammals to the carcinogenic epoxide ethylene oxide (EO). Although ET is the largest volume organic chemical worldwide, the EO burden in ET-exposed humans is still uncertain, and only limited data are available on the EO burden in ET-exposed rodents. Therefore, EO was quantified in blood of mice, rats, or 4 volunteers that were exposed once to constant atmospheric ET concentrations of between 1 and 10 000 ppm (rodents) or 5 and 50 ppm (humans).
View Article and Find Full Text PDFEfficient tissue-specific delivery is a crucial factor in the successful development of therapeutic oligonucleotides. Screening for novel delivery methods with unique tissue-homing properties requires a rapid, sensitive, flexible and unbiased technique able to visualize the in vivo biodistribution of these oligonucleotides. Here, we present whole body scanning PCR, a platform that relies on the local extraction of tissues from a mouse whole body section followed by the conversion of target-specific qPCR signals into an image.
View Article and Find Full Text PDFAbsorption, distribution, metabolism, and excretion properties of two unformulated model short interfering RNA (siRNAs) were determined using a single internal [(3)H]-radiolabeling procedure, in which the full-length oligonucleotides were radiolabeled by Br/(3)H -exchange. Tissue distribution, excretion, and mass balance of radioactivity were investigated in male CD-1 mice after a single intravenous administration of the [(3)H]siRNAs, at a target dose level of 5 mg/kg. Quantitative whole-body autoradiography and liquid scintillation counting techniques were used to determine tissue distribution.
View Article and Find Full Text PDFThe industrial chemical 1,3-butadiene (BD) is a potent carcinogen in mice and a weak one in rats. This difference is generally related to species-specific burdens by the metabolites 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBD), which are all formed in the liver. Only limited data exist on BD metabolism in the rodent liver.
View Article and Find Full Text PDFDeferasirox (Exjade, ICL670, CGP72670) is an iron-chelating drug for p.o. treatment of transfusional iron overload in patients with beta-thalassemia or sickle cell disease.
View Article and Find Full Text PDFEthylene glycol (EG) is a widely used liquid. Limited data are published regarding inhaled EG and no data regarding transdermal EG uptake in humans. In order to gain information on the quantitative fate of EG, four male volunteers inhaled between 1340 and 1610 micromol vaporous 13C-labeled EG (13C2-EG) for 4h.
View Article and Find Full Text PDFPropylene (PE) was not carcinogenic in long-term studies in rodents. However, its biotransformation to propylene oxide (PO) raises questions about a carcinogenic risk. PO alkylates macromolecules, is a direct mutagen, and caused tumors in rodents at high concentrations.
View Article and Find Full Text PDF