Publications by authors named "Falkovich S"

We present results from all-atom molecular dynamics simulations for the structural properties of oligomeric lactic acid chains (OLA) grafted to the surface of cellulose nanocrystals (CNCs) and immersed in the melt of polylactic acid (PLA). Earlier, we have found that the distribution of free ends of OLA molecules is bimodal [Glova et al., Polym.

View Article and Find Full Text PDF

Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations of asymmetric lipid membranes, whose composition is largely consistent with eukaryotic plasma membranes.

View Article and Find Full Text PDF

NMR relaxation experiments are widely used to investigate the local orientation mobility in dendrimers. In particular, the NMR method allows one to measure the spin-lattice relaxation rate, 1/T1, which is connected with the orientational autocorrelation function (ACF) of NMR active groups. We calculate the temperature (Θ) and frequency (ω) dependences of the spin-lattice NMR relaxation rates for segments and NMR active CH2 groups in poly-L-lysine (PLL) dendrimers in water, on the basis of full-atomic molecular dynamics simulations.

View Article and Find Full Text PDF

Due to the great importance for many industrial applications it is crucial from the point of view of theoretical description to reproduce thermal properties of thermoplastic polyimides as accurate as possible in order to establish "chemical structure-physical properties" relationships of new materials. In this paper we employ differential scanning calorimetry, dilatometry, and atomistic molecular dynamics (MD) simulations to explore whether the state-of-the-art computer modeling can serve as a precise tool for probing thermal properties of polyimides with highly polar groups. For this purpose the polyimide R-BAPS based on dianhydride 1,3-bis(3',4-dicarboxyphenoxy)benzene (dianhydride R) and diamine 4,4'-bis(4''-aminophenoxy)biphenyl sulphone) (diamine BAPS) was synthesized and extensively studied.

View Article and Find Full Text PDF

Poly-L-lysine (PLL) dendrimers are promising systems for biomedical applications due to their biocompatibility. These dendrimers have a specific topology: two spacers of different lengths come out of each branching point and thus the branching is asymmetric. Because of this asymmetry terminal groups are located at branches of different lengths, unlike dendrimers with a symmetric branching.

View Article and Find Full Text PDF