During the recent decade, we have witnessed an extraordinary flourishing of soft robotics. Rekindled interest in soft robots is partially associated with the advances in manufacturing techniques that enable the fabrication of sophisticated multi-material robotic bodies with dimensions ranging across multiple length scales. In recent manuscripts, a reader might find peculiar-looking soft robots capable of grasping, walking, or swimming.
View Article and Find Full Text PDFSince its beginnings in the 1960s, soft robotics has been a steadily growing field that has enjoyed recent growth with the advent of rapid prototyping and the provision of new flexible materials. These two innovations have enabled the development of fully flexible and untethered soft robotic systems. The integration of novel sensors enabled by new manufacturing processes and materials shows promise for enabling the production of soft systems with 'embodied intelligence'.
View Article and Find Full Text PDFAs miscellaneous as the Plant Kingdom is, correspondingly diverse are the opportunities for taking inspiration from plants for innovations in science and engineering. Especially in robotics, properties like growth, adaptation to environments, ingenious materials, sustainability, and energy-effectiveness of plants provide an extremely rich source of inspiration to develop new technologies-and many of them are still in the beginning of being discovered. In the last decade, researchers have begun to reproduce complex plant functions leading to functionality that goes far beyond conventional robotics and this includes sustainability, resource saving, and eco-friendliness.
View Article and Find Full Text PDFThe field of plant-inspired robotics is based on principles underlying the movements and attachment and adaptability strategies of plants, which together with their materials systems serve as concept generators. The transference of the functions and underlying structural principles of plants thus enables the development of novel life-like technical materials systems. For example, principles involved in the hinge-less movements of carnivorous snap-trap plants and climbing plants can be used in technical applications.
View Article and Find Full Text PDFBioinspir Biomim
August 2021
In the field of soft robotics, pneumatic elements play an important role due to their sensitive and adaptive behavior. Nevertheless, the rapid prototyping of such actuators is still challenging since conventional 3D printers are not designed to fabricate airtight objects or to specify their bending behavior by combining materials of different stiffness. In order to address this challenge, a tool changing multi-material 3D printer has been constructed, which can be equipped with various print-heads fitted to the specific application.
View Article and Find Full Text PDF