Publications by authors named "Falk Roder"

Background: This study aimed to compare the results of irradiation with protons versus irradiation with carbon ions in a raster scan technique in patients with skull base chordomas and to identify risk factors that may compromise treatment results.

Methods: A total of 147 patients (85 men, 62 women) were irradiated with carbon ions (111 patients) or protons (36 patients) with a median dose of 66 Gy (RBE (Relative biological effectiveness); carbon ions) in 4 weeks or 74 Gy (RBE; protons) in 7 weeks at the Heidelberg Ion Beam Therapy Center (HIT) in Heidelberg, Germany. The median follow-up time was 49.

View Article and Find Full Text PDF

To date, it has not been possible to combine the high optical quality of silver particles with the good chemical stability and synthetic convenience in a fully aqueous system, while simultaneously allowing chemical surface functionalization. We present a synthetic pathway for future developments in information, energy and medical technology where strong optical/electronic properties are crucial. Therefore, the advantages inherent to gold are fused with the plasmonic properties of silver in a fully aqueous Au/Ag/Au core-shell shell system.

View Article and Find Full Text PDF

The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction.

View Article and Find Full Text PDF

Background: Radiotherapy has a central role in the treatment of sinonasal malignancies, either as postoperative or as primary therapy. To study the efficacy and safety of intensity modulated radiotherapy (IMRT) for sinonasal tumors a single center retrospective evaluation focusing on survival and therapy related toxicity was performed.

Methods: One hundred twenty two patients with primary (n = 82) or recurrent (n = 40) malignant sinonasal tumors were treated with intensity modulated radiotherapy between 1999 and 2009 at the University Clinic of Heidelberg and the German Cancer Research Center and retrospectively analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • A tilted reference wave in off-axis electron holography can enhance aberration measurement and correction.
  • The use of a biprism in the electron microscope setup creates this tilted reference wave by modifying the light path with minimal displacement.
  • Experimental results show successful holographic measurements and the potential for improved imaging techniques, particularly in dark-field holography.
View Article and Find Full Text PDF

Nanomagnets form the building blocks for a variety of spin-transport, spin-wave and data storage devices. In this work we generated nanoscale magnets by exploiting the phenomenon of disorder-induced ferromagnetism; disorder was induced locally on a chemically ordered, initially non-ferromagnetic, Fe60Al40 precursor film using  nm diameter beam of Ne(+) ions at 25 keV energy. The beam of energetic ions randomized the atomic arrangement locally, leading to the formation of ferromagnetism in the ion-affected regime.

View Article and Find Full Text PDF

Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate.

View Article and Find Full Text PDF

The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast.

View Article and Find Full Text PDF

Current developments in TEM such as high-resolution imaging at low acceleration voltages and large fields of view, the ever larger capabilities of hardware aberration correction and the systematic shaping of electron beams require accurate descriptions of TEM imaging in terms of wave optics. Since full quantum mechanic solutions have not yet been established for, e.g.

View Article and Find Full Text PDF

The reduced density matrix completely describes the quantum state of an electron scattered by an object in transmission electron microscopy. However, the detection process restricts access to the diagonal elements only. The off-diagonal elements, determining the coherence of the scattered electron, may be obtained from electron holography.

View Article and Find Full Text PDF

By means of off-axis electron holography the local distribution of the magnetic induction within and around a poly-crystalline Permalloy (Ni81Fe19) thin film is studied. In addition the stray field above the sample is measured by magnetic force microscopy on a larger area. The film is deposited on a periodically nanostructured (rippled) Si substrate, which was formed by Xe(+) ion beam erosion.

View Article and Find Full Text PDF

Off-axis electron holography provides access to the phase of the elastically scattered wave in a transmission electron microscope at scales ranging from several hundreds of nanometres down to 0.1nm. In many cases the reconstructed phase shift is directly proportional to projected electric and magnetic potentials rendering electron holography a useful and established characterisation method for materials science.

View Article and Find Full Text PDF

Background: Chordomas are relatively rare lesions of the bones. About 30% occur in the sacrococcygeal region. Surgical resection is still the standard treatment.

View Article and Find Full Text PDF

Make it connected! 2D close-packed layers of inorganic nanoparticles are interconnected by organic fibrils of oleic acid as clearly visualized by electron holography. These fibrils can be mineralised by PbS to transform an organic-inorganic framework to a completely interconnected inorganic semiconducting 2D array.

View Article and Find Full Text PDF

Background: To analyze our experience with intraoperative electron radiation therapy (IOERT) followed by moderate doses of external beam radiation therapy (EBRT) in patients with locally recurrent renal cell carcinoma.

Methods: From 1992 to 2010, 17 patients with histologically proven, locally recurrent renal cell carcinoma (median tumor size 7 cm) were treated by surgery and IOERT with a median dose of 15 Gy. All patients met the premise of curative intent including 7 patients with oligometastases at the time of recurrent surgery, which were resected and/or irradiated.

View Article and Find Full Text PDF

Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice.

View Article and Find Full Text PDF

A new generalized linear transfer theory describing the signal and noise transfer in image detectors is presented, which can be applied to calculate the pixelwise first and second statistical moment of arbitrary experimental images including correlation between pixels. Similar to the existing notion of a point spread function describing the transfer of the first statistical moment (the average), a noise spread function is introduced to characterize the spatially resolved transfer and generation of noise (second central moment, covariance). It is also shown that previously used noise characteristics like the noise power spectrum and detection quantum efficiency, derived from plainly illuminated images, contain only partial information of the complete noise transfer.

View Article and Find Full Text PDF

A novel generalized linear transfer theory describing the signal and noise transfer in image detectors has been developed in Part I (Niermann, this issue, [1]) of this paper. Similar to the existing notion of a point spread function (PSF) describing the transfer of the first statistical moment (the average), a noise spread function (NSF) was introduced to characterize the spatially resolved transfer of noise (central second moment, covariance). Following the theoretic results developed in Part I (Niermann, this issue, [1]), a new experimental method based on single spot illumination has been developed and applied to measure 2D point and 4D noise spread functions of CCD cameras used in TEM.

View Article and Find Full Text PDF

Arteriovenous malformations (AVM) can be treated with stereotactic radiosurgery. An infrequent, but important complication of this treatment is radionecrosis, which can be detected by MRI. However, the imaging characteristics of necrosis are unspecific in conventional MRI.

View Article and Find Full Text PDF

Helical tomotherapy is a form of image-guided intensity-modulated radiotherapy that introduces the ring gantry concept into radiation oncology. The system is a combination of a therapeutic linear accelerator and a megavoltage CT-scanner. This work describes the clinical experience with megavoltage CT with 456 patients in more than 11000 fractions.

View Article and Find Full Text PDF

Treatment of hyperlipidemic patients with the thiol compound N-acetylcysteine (NAC) was previously shown to cause a significant dose-related increase in the high-density lipoprotein (HDL)-cholesterol serum level, suggesting the possibility that its disease-related decrease may result from a diminished thiol concentration and/or thiol/disulfide redox status (REDST) in the plasma. We therefore investigated plasma thiol levels and REDST in normo-/hyperlipidemic subjects with and without coronary heart disease (CHD). The thiol level, REDST, and amino acid concentrations in the plasma and intracellular REDST of peripheral blood mononuclear cells (PBMC) have been determined in 62 normo- and hyperlipidemic subjects.

View Article and Find Full Text PDF