We demonstrate that the well-known 2.6 MeV gamma-ray emission line from thallium-208 could serve as a real-time indicator of astrophysical heavy element production, with both rapid (r) and intermediate (i) neutron capture processes capable of its synthesis. We consider the r process in a Galactic neutron star merger and show Tl-208 to be detectable from ∼12 hours to ∼ten days, and again ∼1-20 years postevent.
View Article and Find Full Text PDFMeasuring neutron capture cross sections of radioactive nuclei is a crucial step towards a better understanding of the origin of the elements heavier than iron. For decades, the precise measurement of direct neutron capture cross sections in the "stellar" energy range (eV up to a few MeV) was limited to stable and longer-lived nuclei that could be provided as physical samples and then irradiated with neutrons. New experimental methods are now being developed to extend these direct measurements towards shorter-lived radioactive nuclei ( 1 y).
View Article and Find Full Text PDFAfter a hot white dwarf ceases its nuclear burning, its helium may briefly and explosively reignite. This causes the star to evolve back into a cool giant, whereupon it experiences renewed mass ejection before reheating. A reignition event of this kind was observed in 1996 in V4334 Sgr (Sakurai's object).
View Article and Find Full Text PDF