his study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used ( = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC).
View Article and Find Full Text PDFEstablishing a proper soft tissue adhesion around the implant abutment is essential to prevent microbial invasion, inhibit epithelial downgrowth, and obtain an optimal healing process. This systematic review aims to evaluate the real potential of TiO coating on the behavior of peri-implant soft tissue health and maintenance. A specific aim was to evaluate clinically and histologically the effect of TiO abutment coating on epithelial and connective tissue attachment.
View Article and Find Full Text PDFAir particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against .
View Article and Find Full Text PDFObjectives: Three-dimensional cone beam computed tomography (CBCT) imaging can be considered, especially in patients with complicated peri-implantitis (PI). Artifacts induced by dense materials are the drawback of CBCT imaging and the peri-implant bone condition may not be assessed reliably because the artifacts are present in the same area. This pilot study investigates the performance of the artifact reduction algorithm (ARA) of the Planmeca Viso G7 CBCT device (Planmeca, Helsinki, Finland) with three different implant materials and imaging parameters.
View Article and Find Full Text PDFHydroxyapatite (HA; Ca(PO)(OH)) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA.
View Article and Find Full Text PDFTissue Eng Part C Methods
May 2023
Bioactive glasses (BAGs) are surface-active ceramic materials that can be used in bone regeneration due to their known osteoconductive and osteoinductive properties. This systematic review aimed to study the clinical and radiographic outcomes of using BAGs in periodontal regeneration. The selected studies were collected from PubMed and Web of Science databases, and included clinical studies investigating the use of BAGs on periodontal bone defect augmentation between January 2000 and February 2022.
View Article and Find Full Text PDFThe soft tissue-implant interface requires the formation of epithelium and connective tissue seal to hinder microbial infiltration and prevent epithelial down growth. Nanoporous titanium dioxide (TiO) surface coatings have shown good potential for promoting soft tissue attachment to implant surfaces. However, the impact of their surface properties on the biological response of gingival cells needs further investigation.
View Article and Find Full Text PDFObjectives: The present study aimed to evaluate the healing of experimentally induced bone defects around contaminated dental implants after air-abrasion using 45S5 or zinc oxide (ZnO)-containing bioactive glasses (BAGs).
Materials And Methods: One maxillary first molar was extracted from each Sprague-Dawley rat (n = 30). After 4-week healing, a titanium implant was placed in the extraction site with a circumferential bone defect.
Background: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability.
View Article and Find Full Text PDFThis aim of this study was to investigate the effects of three types of air-abrasion particles on dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis, both of which were cultured on sandblasted and acid-etched (SA) titanium discs. Out of 24 SA discs with biofilm, 18 were exposed to either air-abrasion using Bioglass 45S5 (45S5 BG; n = 6), novel zinc (Zn)-containing bioactive glass (Zn4 BG; n = 6), or inert glass (n = 6). The efficiency of biofilm removal was evaluated using scanning electron microscopy (SEM) imaging and culturing techniques.
View Article and Find Full Text PDFThe aim of this study was to evaluate the hydrophilicity, surface free energy, and proliferation and viability of human osteoblast-like MC3T3-E1 cells on sandblasted and acid-etched titanium surfaces after air-abrasion with 45S5 bioactive glass, zinc-containing bioactive glass, or inert glass. Sandblasted and acid-etched titanium discs were subjected to air-abrasion with 45S5 bioactive glass, experimental bioactive glass (Zn4), or inert glass. Water contact angles and surface free energy were evaluated.
View Article and Find Full Text PDFis able to form a high-affinity biofilm on material surfaces. has also been detected around infected implants. Bioactive glasses (BAGs) have been shown to possess antibacterial effects against and other microorganisms.
View Article and Find Full Text PDFAims: This study was designed to evaluate the effect of gap width and graft placement on bone healing around implants placed into simulated extraction sockets in the mandibles of four beagle dogs.
Materials And Methods: Four Ti-Unite implants (13 mm x 3.3 mm) were placed on each side of the mandible.