Publications by authors named "Faleev N"

Serine 339 of the active site of methionine γ-lyase (MGL) is a conserved amino acid in most pyridoxal 5'-phosphate-dependent enzymes of the cystathionine β-lyase subclass, to which MGL belongs. The reaction mechanism of the MGL-catalyzed γ-elimination reaction is poorly explored. We replaced serine 339 with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme catalyzing γ-elimination in l-methionine. Pyridoxal 5'-phosphate-dependent enzymes have unique spectral properties that allow to monitor sequential formation and decomposition of various intermediates via the detection of absorbance changes. The kinetic mechanism of the γ-elimination reaction catalyzed by Citrobacter freundii MGL was elucidated here by fast stopped-flow kinetic analysis.

View Article and Find Full Text PDF

In the reaction between tryptophan indole-lyase (TIL) and a substrate containing a bad leaving group (L-serine), general acid catalysis is required for the group's elimination. During this stage, the proton originally bound to the C atom of the substrate is transferred to the leaving group, which is eliminated as a water molecule. As a result, the basic group that had accepted the C proton at the previous stage has to be involved in the catalytic stage following the elimination in its basic form.

View Article and Find Full Text PDF

In the spatial structure of tyrosine phenol-lyase, the Ser51 residue is located in the active site of the enzyme. The replacement of Ser51 with Ala by site-directed mutagenesis led to a decrease of the k/K parameter for reactions with l-tyrosine and 3-fluoro-l-tyrosine by three orders of magnitude, compared to wild type enzyme. For the elimination reactions of S-alkylcysteines, the values of k/K decreased by an average of two orders of magnitude.

View Article and Find Full Text PDF

Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates.

View Article and Find Full Text PDF

The interaction of the mutant tryptophan indole-lyase (TIL) from Proteus vulgaris Y72F with the transition state analogue, oxindolyl-l-alanine (OIA), with the natural substrate, l-tryptophan, and with a substrate S-ethyl-l-cysteine was examined. In the case of wild-type enzyme these reactions are described by the same kinetic scheme where binding of holoenzyme with an amino acid, leading to reversible formation of an external aldimine, proceeds very fast, while following transformations, leading finally to reversible formation of a quinonoid intermediate proceed with measureable rates. Principally the same scheme ("induced fit") is realized in the case of mutant Y72F enzyme reaction with OIA.

View Article and Find Full Text PDF

The carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from l-tryptophan and l-tyrosine, respectively. These PLP-dependent enzymes show high sequence homology (∼40% identity) and both form homotetrameric structures. Steady state kinetic studies with both enzymes show that an active site base is essential for activity, and α-deuterated substrates exhibit modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting.

View Article and Find Full Text PDF

The three-dimensional structure of the external aldimine of Citrobacter freundii methionine γ-lyase with competitive inhibitor glycine has been determined at 2.45 Å resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of Cα-protons of the external aldimine.

View Article and Find Full Text PDF

The key step in the enzymatic reaction catalyzed by tyrosine phenol-lyase (TPL) is reversible cleavage of the Cβ-Cγ bond of L-tyrosine. Here, we present X-ray structures for two enzymatic states that form just before and after the cleavage of the carbon-carbon bond. As for most other pyridoxal 5'-phosphate-dependent enzymes, the first state, a quinonoid intermediate, is central for the catalysis.

View Article and Find Full Text PDF

Kinetic parameters of Citrobacter freundii methionine γ-lyase were determined with substrates in γ-elimination reactions as well as the inhibition of the enzyme in the γ-elimination of L-methionine by amino acids with different structure. The data indicate an important contribution of the sulfur atom and methylene groups to the efficiency of binding of substrates and inhibitors. The rate constants of the enzyme-catalyzed exchange of C-α- and C-β-protons with deuterium were determined, as well as the kinetic isotope effect of the deuterium label in the C-α-position of inhibitors on the rate of exchange of their β-protons.

View Article and Find Full Text PDF

A comparative study of the kinetics and stereospecificity of isotopic exchange of the pro-2R- and pro-2S protons of glycine in (2)H(2)O under the action of tyrosine phenol-lyase (TPL), tryptophan indole-lyase (TIL) and methionine γ-lyase (MGL) was undertaken. The kinetics of exchange was monitored using both (1)H- and (13)C-NMR. In the three compared lyases the stereospecificities of the main reactions with natural substrates dictate orthogonal orientation of the pro-2R proton of glycine with respect to the cofactor pyridoxal 5'-phosphate (PLP) plane.

View Article and Find Full Text PDF

We have studied and compared the pH-dependencies of the main kinetic parameters for the alpha,gamma-elimination reactions of methionine gamma-lyase (MGL) of Citrobacter intermedius with natural substrate, l-methionine, with its phosphinic analogue, and for alpha,beta-elimination reaction with S-methyl-l-cysteine. From the pH-dependency of k(cat)/K(m) for the reaction with l-methionine we have concluded that MGL is selective with respect to the zwitterionic form of its natural substrate. For the reaction of MGL with 1-amino-3-methylthiopropylphosphinic acid the pK(a) of the substrate's amino group, equal to 7.

View Article and Find Full Text PDF

Amino acid transformations catalyzed by a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes involve abstraction of the Calpha proton from an external aldimine formed between a substrate and the cofactor leading to the formation of a quinonoid intermediate. Despite the key role played by the quinonoid intermediates in the catalysis by PLP-dependent enzymes, limited accurate information is available about their structures. We trapped the quinonoid intermediates of Citrobacter freundii tyrosine phenol-lyase with L-alanine and L-methionine in the crystalline state and determined their structures at 1.

View Article and Find Full Text PDF

Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate.

View Article and Find Full Text PDF

In the X-ray structure of tyrosine phenol-lyase (TPL) Asp214 is located at H-bonding distance from the N1 atom of the cofactor. This residue has been replaced with Ala and Asn and the properties of the mutant enzymes have been studied. The substitutions result in a decrease in the cofactor affinity of about four orders of magnitude.

View Article and Find Full Text PDF

It is shown for the first time for the Enterobacteriaceae family that a gene encoding L-methionine gamma-lyase (MGL) is present in the genome of Citrobacter freundii. Homogeneous enzyme has been purified from C. freundii cells and its N-terminal sequence has been determined.

View Article and Find Full Text PDF

Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase.

View Article and Find Full Text PDF

Citrobacter freundii cells produce L-methionine gamma-lyase when grown on a medium containing L-methionine. The nucleotide sequence of the hybrid plasmid with a C. freundii EcoRI insert of about 3.

View Article and Find Full Text PDF

To shed light on the mechanism of isotopic exchange of alpha-protons in amino acids catalyzed by pyridoxal phosphate (PLP)-dependent enzymes, we studied the kinetics of quinonoid intermediate formation for the reactions of tyrosine phenol-lyase with L-phenylalanine, L-methionine, and their alpha-deuterated analogues in D2O, and we compared the results with the rates of the isotopic exchange under the same conditions. We have found that, in the L-phenylalanine reaction, the internal return of the alpha-proton is operative, and allowing for its effect, the exchange rate is accounted for satisfactorily. Surprisingly, for the reaction with L-methionine, the enzymatic isotope exchange went much faster than might be predicted from the kinetic data for quinonoid intermediate formation.

View Article and Find Full Text PDF

In the spatial structure of tryptophanase from Proteus vulgaris the guanidinium group of arginine 226 forms a salt bridge with the 3;-oxygen atom of the coenzyme. The replacement of arginine 226 with alanine using site-directed mutagenesis reduced the affinity of the coenzyme for the protein by one order of magnitude compared to the wild-type enzyme. The catalytic activity of the mutant enzyme in the reaction with L-tryptophan was reduced 10(5)-fold compared to the wild-type enzyme.

View Article and Find Full Text PDF

Tryptophan indole-lyase (Trpase) from Proteus vulgaris is a pyridoxal 5'-phosphate dependent enzyme that catalyzes the reversible hydrolytic cleavage of L-Trp to yield indole and ammonium pyruvate. Asp-133 and His-458 are strictly conserved in all sequences of Trpase, and they are located in the proposed substrate-binding region of Trpase. These residues were mutated to alanine to probe their role in substrate binding and catalysis.

View Article and Find Full Text PDF