In live organisms, cells are embedded in tissue-specific extracellular matrix (ECM), which provides chemical and mechanical signals important for cell differentiation, migration, and overall functionality. Careful reproduction of ECM properties in artificial cell scaffolds is necessary to get physiologically relevant results of in vitro studies and produce robust materials for cell and tissue engineering. Nanoarchitectonics is a contemporary way to building complex materials from nano-scale objects of artificial and biological origin.
View Article and Find Full Text PDFMicropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes.
View Article and Find Full Text PDFGelatin-based hydrogels have gained considerable attention due to their resemblance to the extracellular matrix and hydrophilic three-dimensional network structure. Apart from providing an air-permeable and moist environment, these hydrogels optimize the inflammatory microenvironment of the wounds. These properties make gelatin-based hydrogels highly competitive in the field of wound dressings.
View Article and Find Full Text PDFOrganic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM -Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various -Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties.
View Article and Find Full Text PDFThe history of mankind has been accompanied by the development of materials science [...
View Article and Find Full Text PDFis best known for its significant adaptive potential and ability to colonize different ecological niches. Different strains of are widely used as probiotics. To characterize the probiotic potential of the novel FCa3L strain isolated from fermented cabbage, we sequenced its whole genome using the Illumina MiSeq platform.
View Article and Find Full Text PDFFirst introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability.
View Article and Find Full Text PDFTo implement a specific function, cells recognize multiple physical and chemical cues and exhibit molecular responses at their interfaces - the boundary regions between the cell lipid-based membrane and the surrounding extracellular matrix (ECM). Mimicking the cellular external microenvironment presents a big challenge in nanoarchitectonics due to the complexity of the ECM and lipid membrane fragility. This study reports an approach for the assembly of a lipid bilayer, mimicking the cellular membrane, placed on top of a polyelectrolyte multilayer cushion made of hyaluronic acid and poly-L-lysine - a nanostructured biomaterial, which represents a 3D artificial ECM.
View Article and Find Full Text PDFKeratin/alginate hydrogels filled with halloysite nanotubes (HNTs) have been tested for the protective coating of human hair. Preliminary studies have been conducted on the aqueous colloidal systems and the corresponding hydrogels obtained by using Ca ions as crosslinkers. Firstly, we have investigated the colloidal properties of keratin/alginate/HNTs dispersions to explore the specific interactions occurring between the biomacromolecules and the nanotubes.
View Article and Find Full Text PDFA nanoarchitectural approach to the design of functional nanomaterials based on natural aluminosilicate nanotubes and their catalysis, and practical applications are described in this paper. We focused on the buildup of hybrid core-shell systems with metallic or organic molecules encased in aluminosilicate walls, and nanotube templates for structured silica and zeolite preparation. The basis for such an architectural design is a unique AlO/SiO dual chemistry of 50 nm diameter halloysite tubes.
View Article and Find Full Text PDFApart from other severe consequences, the COVID-19 pandemic has inflicted a surge in personal protective equipment usage, some of which, such as medical masks, have a short effective protection time. Their misdisposition and subsequent natural degradation make them huge sources of micro- and nanoplastic particles. To better understand the consequences of the direct influence of microplastic pollution on biota, there is an urgent need to develop a reliable and high-throughput analytical tool for sub-micrometre plastic identification and visualisation in environmental and biological samples.
View Article and Find Full Text PDFThe high worldwide consumption of cheap plastic goods has already resulted in a serious environmental plastic pollution, exacerbated by piling of disposed personal protective equipment because of the recent outbreak of COVID-19. The aim of this study was to assess the feasibility of dark-field hyperspectral microscopy in the 400-1000 wavelength range for detection of nanoplastics derived from weathered polypropylene masks. A surgical mask was separated to layers and exposed to UV radiation (254 nm) for 192 h.
View Article and Find Full Text PDFPart Fibre Toxicol
August 2022
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.
View Article and Find Full Text PDFInactivation of bacteria under the influence of visible light in presence of nanostructured materials is an alternative approach to overcome the serious problem of the growing resistance of pathogenic bacteria to antibiotics. Cadmium sulfide quantum dots are superefficient photocatalytic material suitable for visible light transformation. In this work, CdS nanoparticles with size of less than 10 nm (QDs) were synthesized on the surface of natural and synthetic mesoporous aluminosilicates and silicates (halloysite nanotubes, MCM-41, MCM-41/Halloysite, SBA-15).
View Article and Find Full Text PDFThe development of new approaches to treat the growing antibiotic resistance of pathogenic bacterial species is an important task to ensure the future safety of society. Utilization of irradiation of different wavelengths together with nanostructured materials based on metal containing nanoparticles may result in synergetic antibacterial effects. In this paper we aim to show the main conceptions of light-assisted bacteria deactivation techniques and prospects of application of natural clay nanotubes as a carrier for scalable photoactive antibacterial nanomaterials.
View Article and Find Full Text PDFIn this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed.
View Article and Find Full Text PDFReproducibility of the experimental results and object of study itself is one of the basic principles in science. But what if the object characterized by technologically important properties is natural and cannot be artificially reproduced one-to-one in the laboratory? The situation becomes even more complicated when we are interested in exploring stochastic properties of a natural system and only a limited set of noisy experimental data is available. In this paper we address these problems by exploring diffusive motion of some natural clays, halloysite and sepiolite, in a liquid environment.
View Article and Find Full Text PDFThe extracellular vesicles (EVs) produced by bacteria transport a wide range of compounds, including proteins, DNA and RNA, mediate intercellular interactions, and may be important participants in the mechanisms underlying the persistence of infectious agents. This study focuses on testing the hypothesis that the EVs of mycoplasmas, the smallest prokaryotes capable of independent reproduction, combined in the class referred to as Mollicutes, can penetrate into eukaryotic cells and modulate their immunoreactivity. To verify this hypothesis, for the first time, studies of in vitro interaction between human skin fibroblasts and vesicles isolated from Acholeplasma laidlawii (the ubiquitous mycoplasma that infects higher eukaryotes and is the main contaminant of cell cultures and vaccines) were conducted using confocal laser scanning microscopy and proteome profiling, employing a combination of 2D-DIGE and MALDI-TOF/TOF, the Mascot mass-spectrum analysis software and the DAVID functional annotation tool.
View Article and Find Full Text PDFThe concerns regarding microplastics and nanoplastics pollution stimulate studies on the uptake and biodistribution of these emerging pollutants in vitro. Atomic force microscopy in nanomechanical PeakForce Tapping mode was used here to visualise the uptake and distribution of polystyrene spherical microplastics in human skin fibroblast. Particles down to 500 nm were imaged in whole fixed cells, the nanomechanical characterization allowed for differentiation between internalized and surface attached plastics.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies.
View Article and Find Full Text PDFThe importance and need for eco-oriented technologies has increased worldwide, which leads to an enhanced development of methods for the synthesis of nanoparticles using biological agents. This review de-scribes the current approaches to the preparation of biogenic silver nanoparticles, using plant extracts and filtrates of fungi and microorganisms. The peculiarities of the synthesis of particles depending on the source of biocomponents are considered as well as physico-morphological, antibacterial and antifungal properties of the resulting nanoparticles which are compared with such properties of silver nanoparticles obtained by chemical synthesis.
View Article and Find Full Text PDFBiomedical applications of DNA are diverse but are usually associated with specific recognition of target nucleotide sequences or proteins and with gene delivery for therapeutic or biotechnological purposes. However, other aspects of DNA functionalities, like its nontoxicity, biodegradability, polyelectrolyte nature, stability, thermo-responsivity and charge transfer ability that are rather independent of its sequence, have recently become highly appreciated in material science and biomedicine. Whereas the latest achievements in structural DNA nanotechnology associated with DNA sequence recognition and Watson-Crick base pairing between complementary nucleotides are regularly reviewed, the recent uses of DNA as a raw material in biomedicine have not been summarized.
View Article and Find Full Text PDFHere we report the use of forskolin-modified halloysite nanotubes (HNTs) as a dopant for biopolymer porous hydrogel scaffolds to impart osteoinductive properties. Forskolin is a labdane diterpenoid isolated from the Indian Coleus plant. This small molecule is widely used as a supplement in molecular biology for cell differentiation.
View Article and Find Full Text PDF