Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions.
View Article and Find Full Text PDFThe growth of protective tribofilms from lubricant antiwear additives on rubbing surfaces is initiated by mechanochemically promoted dissociation reactions. These processes are not well understood at the molecular scale for many important additives, such as tricresyl phosphate (TCP). One aspect that needs further clarification is the extent to which the surface properties affect the mechanochemical decomposition.
View Article and Find Full Text PDFTwo-dimensional (2D) lamellar materials are normally capable of rendering super-low friction, wear protection, and adhesion reduction in nanoscale due to their ultralow shear strength between two basal plane surfaces. However, high friction at step edges prevents the 2D materials from achieving super-low friction in macroscale applications and eventually leads to failure of lubrication performance. Here, taking graphene as an example, the authors report that not all step edges are detrimental.
View Article and Find Full Text PDFFaraday Discuss
January 2023
Mechanochemical activation has created new opportunities for applications such as solvent-free chemical synthesis, polymer processing, and lubrication. However, mechanistic understanding of these processes is still limited because the mechanochemical response of a system is a complex function of many variables, including the direction of applied stress and the chemical features of the reactants in non-equilibrium conditions. Here, we studied shear-activated reactions of simple cyclic organic molecules to isolate the effect of chemical structure on reaction yield and pathway.
View Article and Find Full Text PDF