Transition metal sulfides have become famous in high energy density supercapacitor materials owing to their rich redox and high conductivity. While their development has achieved a breakthrough in terms of capacitance, there is little knowledge from the theoretical perspective on how dopants play a role in enhancing their capacitances. In this work, pseudocapacitance and quantum capacitance were evaluated through first-principles calculation to describe their role in transition metal sulfide, which here is represented by copper sulfide (CuS).
View Article and Find Full Text PDFIron disulfide or pyrite (FeS) has emerged as a promising transition metal sulfide-based supercapacitor owing to its abundance and superb electrochemical properties. However, FeS still faces major hurdles in realizing its full potential, such as a low energy density and poor conductivity. In this study, we report a high-performance FeS supercapacitor synthesized by a direct one-step process with the help of polyvinylpyrrolidone (PVP).
View Article and Find Full Text PDF