Publications by authors named "Fakhr E Alam"

Drug delivery via aerosolization for localized and systemic effect is a non-invasive approach to achieving pulmonary targeting. The aim of this study was to prepare spray-dried proliposome (SDP) powder formulations to produce carrier particles for superior aerosolization performance, assessed via a next generation impactor (NGI) in combination with a dry powder inhaler. SDP powder formulations (F1-F10) were prepared using a spray dryer, employing five different types of lactose carriers (Lactose monohydrate (LMH), lactose microfine (LMF), lactose 003, lactose 220 and lactose 300) and two different dispersion media.

View Article and Find Full Text PDF

Combining the advantages of high thermal conductivities and low graphene contents to fabricate polymer composites for applications in thermal management is still a great challenge due to the high defect degree of exfoliated graphene, the poor orientation of graphene in polymer matrices, and the horrible phonon scattering between graphene/graphene and graphene/polymer interfaces. Herein, mesoplasma chemical vapor deposition (CVD) technology was successfully employed to synthesize vertically aligned graphene nanowalls (GNWs), which are covalently bonded by high-quality CVD graphene nanosheets. The unique architecture leads to an excellent thermal enhancement capacity of the GNWs, and a corresponding composite film with a matrix of polyvinylidene fluoride (PVDF) presented a high through-plane thermal conductivity of 12.

View Article and Find Full Text PDF

High thermal conductivity polymer composites at low filler loading are of considerable interest because of their wide range of applications. The construction of three-dimensional (3D) interconnected networks can offer a high-efficiency increase for the thermal conductivity of polymer composites. In this work, a facile and scalable method to prepare graphene foam (GF) via sacrificial commercial polyurethane (PU) sponge templates was developed.

View Article and Find Full Text PDF

With the increasing integration of devices in electronics fabrication, there are growing demands for thermal interface materials (TIMs) with high through-plane thermal conductivity for efficiently solving thermal management issues. Graphene-based papers consisting of a layer-by-layer stacked architecture have been commercially used as lateral heat spreaders; however, they lack in-depth studies on their TIM applications due to the low through-plane thermal conductivity (<6 W m K). In this study, a graphene hybrid paper (GHP) was fabricated by the intercalation of silicon source and the in situ growth of SiC nanorods between graphene sheets based on the carbothermal reduction reaction.

View Article and Find Full Text PDF

The extensive use of electronic equipment in modern life causes potential electromagnetic pollution harmful to human health. Therefore, it is of great significance to enhance the electrical conductivity of polymers, which are widely used in electronic components, to screen out electromagnetic waves. The fabrication of graphene/polymer composites has attracted much attention in recent years due to the excellent electrical properties of graphene.

View Article and Find Full Text PDF

This study evaluated the toxic effects of titanium dioxide (TiO2) bulk salt as well as its nanoparticles (NPs) in anatase phase with mean crystallite size of 36.15 nm in male Sprague-Dawley rats by subcutaneous injections at four different dose levels of either control (0), 50, 100 or 150 mg/kg of body weight (BW) of rat for 28 days on alternate days. Animal mortality, haematology, micronucleus assay, liver histology and activities of liver tissue damage markers like, alkaline phosphate (ALP), alanine transaminase (ALT), aspartate transaminase (AST), as well as oxidative stress indicators like superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) were investigated.

View Article and Find Full Text PDF