Publications by authors named "Fak B"

CrBr_{3} is an excellent realization of the two-dimensional honeycomb ferromagnet, which offers a bosonic equivalent of graphene with Dirac magnons and topological character. We perform inelastic neutron scattering measurements using state-of-the-art instrumentation to update 50-year-old data, thereby enabling a definitive comparison both with recent experimental claims of a significant gap at the Dirac point and with theoretical predictions for thermal magnon renormalization. We demonstrate that CrBr_{3} has next-neighbor J_{2} and J_{3} interactions approximately 5% of J_{1}, an ideal Dirac magnon dispersion at the K point, and the associated signature of isospin winding.

View Article and Find Full Text PDF

Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as quantum spin liquids in real materials. In this Letter, we address exchange interactions in Sr_{2}CuTe_{x}W_{1-x}O_{6}, a series of double perovskites that realize a spin-1/2 square lattice and are suggested to harbor a quantum spin liquid ground state arising from the random distribution of nonmagnetic ions. Our ab initio multireference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor due to the crucial role of unoccupied states of the nonmagnetic ions in the super-superexchange mechanism.

View Article and Find Full Text PDF

In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd ion in four metalloligated lanthanide complexes of formula [PPh][Ln{Pd(SAc)}] (SAc = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd compared to the previously reported isostructural Pt-based complexes.

View Article and Find Full Text PDF

Spin correlations of the frustrated pyrochlore oxide Tb Ti O have been investigated by using inelastic neutron scattering on single-crystalline samples ( = -0.007, 0.000, and 0.

View Article and Find Full Text PDF

The spin-1/2 kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu_{3}V_{2}O_{8}(OD)_{2}, a fully stoichiometric S=1/2 kagome magnet with <1% lattice distortion, orders magnetically at T_{N}=9  K into a multi-k coplanar variant of the predicted triple-k octahedral structure. We find that this structure is stabilized by a dominant antiferromagnetic third-neighbor exchange J_{3} with minor first- or second-neighbor exchanges.

View Article and Find Full Text PDF

We report on inelastic neutron scattering measurements of the antiferromagnetic NdPdAl compound. NdPdAl crystallizes in the tetragonal I4/mmm space group and exhibits a distinct uniaxial anisotropy due to crystal field effects. In this study, we have revealed the crystal field energy levels of NdPdAl composed of five Kramers doublets.

View Article and Find Full Text PDF

Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr_{2}Se_{4} is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy_{2}Ti_{2}O_{7}. In this Letter we use diffuse neutron scattering to show that both CdEr_{2}Se_{4} and CdEr_{2}S_{4} support a dipolar spin ice state-the host phase for a Coulomb gas of emergent magnetic monopoles.

View Article and Find Full Text PDF

The mineral linarite, PbCuSO_{4}(OH)_{2}, is a spin-1/2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase.

View Article and Find Full Text PDF

The complexity embedded in condensed matter fertilizes the discovery of new states of matter, enriched by ingredients like frustration. Illustrating examples in magnetic systems are Kitaev spin liquids, skyrmions phases, or spin ices. These unconventional ground states support exotic excitations, for example the magnetic charges in spin ices, also called monopoles.

View Article and Find Full Text PDF

Sr_{2}CuTeO_{6} presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2  Cu^{2+} ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu^{2+} electronic structure and to evaluate exchange interactions in Sr_{2}CuTeO_{6}. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters.

View Article and Find Full Text PDF

A hidden order that emerges in the frustrated pyrochlore Tb_{2+x}Ti_{2-x}O_{7+y} with T_{c}=0.53  K is studied using specific heat, magnetization, and neutron scattering experiments on a high-quality single crystal. Semiquantitative analyses based on a pseudospin-1/2 Hamiltonian for ionic non-Kramers magnetic doublets demonstrate that it is an ordered state of electric quadrupole moments.

View Article and Find Full Text PDF

High-resolution neutron resonance spin-echo measurements of superfluid 4He show that the roton energy does not have the same temperature dependence as the inverse lifetime. Diagrammatic analysis attributes this to the interaction of rotons with thermally excited phonons via both four- and three-particle processes, the latter being allowed by the broken gauge symmetry of the Bose-condensate. The distinct temperature dependence of the roton energy at low temperatures suggests that the net roton-phonon interaction is repulsive.

View Article and Find Full Text PDF

Polarized and unpolarized neutron scattering experiments on the frustrated ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at H(Q) of 8 T is driven by quadrupolar fluctuations and that dipolar correlations are short range with moments parallel to the applied magnetic field in the high-field phase. Heat-capacity measurements evidence a phase transition into this high-field phase, with an anomaly clearly different from that at low magnetic fields. Our experimental data are consistent with a picture where the ground state above H(Q) has a next-nearest neighbor bond-nematic order along the chains with a fluidlike coherence between weakly coupled chains.

View Article and Find Full Text PDF

Magnetic susceptibility, NMR, muon spin relaxation, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphic with herbertsmithite, is a gapless spin liquid showing unusual dynamic short-range correlations of noncoplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to bulk susceptibility data and possesses competing exchange interactions. The magnetic specific heat calculated from these exchange couplings is in good agreement with experiment.

View Article and Find Full Text PDF

Inelastic neutron scattering measurements show the existence of a strong two-spinon continuum in the frustrated ferromagnetic spin-1/2 chain compound LiCuVO4. The dynamic magnetic susceptibility is well described by a mean-field model of two coupled interpenetrating antiferromagnetic Heisenberg chains. The extracted values of the exchange integrals are in good agreement with the static magnetic susceptibility data and an earlier spin-wave description of the bound state near the lower boundary of the two-spinon continuum.

View Article and Find Full Text PDF

We infer that soft-x-ray absorption spectroscopy is a versatile method for the determination of the crystal-field ground state symmetry of rare earth heavy fermion systems, complementing neutron scattering. Using realistic and universal parameters, we provide a theoretical mapping between the polarization dependence of Ce M(4,5) spectra and the charge distribution of the Ce 4f states. The experimental resolution can be orders of magnitude larger than the 4f crystal-field splitting itself.

View Article and Find Full Text PDF

We have investigated the kagomé ice behavior of the dipolar spin-ice compound Dy2Ti2O7 in a magnetic field along a [111] direction using neutron scattering and Monte Carlo simulations. The spin correlations show that the kagomé ice behavior predicted for the nearest-neighbor interacting model, where the field induces dimensional reduction and spins are frustrated in each two-dimensional kagomé lattice, occurs in the dipole interacting system. The spins freeze at low temperatures within the macroscopically degenerate ground states of the nearest-neighbor model.

View Article and Find Full Text PDF

Liquid (4)He immersed in porous media such as aerogel, Vycor, and Geltech silica are excellent examples of bosons in disorder and confinement. Of special interest is the impact of disorder on Bose-Einstein condensation (BEC), on the elementary excitations of the superfluid and on their connection to the superfluid properties. Indeed, the modifications induced by disorder can be used to reveal the interdependence of BEC, the excitations and superfluidity.

View Article and Find Full Text PDF

We have measured the magnetic field dependence of the ordered antiferromagnetic moment and the magnetic excitations in the heavy-fermion superconductor URu2Si2 for fields up to 17 T applied along the tetragonal c axis, using neutron scattering. The decrease of the magnetic intensity of the tiny moment with increasing field does not follow a simple power law, but shows a clear inflection point, indicating that the moment disappears first at the metamagnetic transition at approximately 40 T. This suggests that the moment m is connected to a hidden order parameter psi which belongs to the same irreducible representation breaking time-reversal symmetry.

View Article and Find Full Text PDF

Inelastic neutron scattering measurements of magnetic excitations in the charge-ordered state of Yb4As3 have been performed under magnetic field up to about 6 T. By applying a magnetic field, the spectrum at the one-dimensional wave vector q = 1 [ pi/d] changes drastically from a broad one corresponding to the spinon excitation continuum of the one-dimensional S = 1 / 2 spin system to a sharp one at a finite energy, indicating the opening of an energy gap in the system. The magnetic field dependence of the gap is well fitted by the power law H2/3.

View Article and Find Full Text PDF

We report the first observation of two-dimensional layer modes in both fully filled and partially filled aerogel. Using complementary high-energy resolution and high statistical precision neutron scattering instruments, and two different 87% porous aerogel samples, we show that the three-dimensional (3D) phonon-roton excitation energies and lifetimes of liquid 4He in aerogel are the same as in bulk 4He within current precision. The layer modes are the excitations that distinguish aerogel from the bulk rather than a difference in the 3D roton energy.

View Article and Find Full Text PDF

Using inelastic neutron scattering, we have observed well-defined phonon-roton ( p-r) excitations in superfluid 4He in Vycor over a wide wave-vector range, 0.3 View Article and Find Full Text PDF

At low temperature, macroscopic properties of URu(2)Si(2) display a characteristic energy scale delta(0)(B) which decreases when a magnetic field is applied, and eventually vanishes at an extrapolated value of the field of about 40 T. We have performed inelastic neutron scattering measurements of the magnetic dynamics of URu(2)Si(2) in applied fields along the c axis of intensities up to 12 T. We show that delta(0)(B) is not related to gaps in the magnetic fluctuations spectra.

View Article and Find Full Text PDF

The origin of the well-defined collective excitations found in liquid para-H2 by recent experiments is investigated. The persistence of their relatively long lifetimes down to microscopic scales is well accounted for by calculations carried out by means of path-integral-centroid molecular dynamics. In contrast only overdamped excitations are found in calculations carried within the classical limit.

View Article and Find Full Text PDF