Interleukin 17 (IL-17) cytokines promote inflammatory pathophysiology in many autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Such broad involvement of IL-17 in various autoimmune diseases makes it an ideal target for drug discovery. Psoriasis is a chronic inflammatory disease characterized by numerous defective components of the immune system.
View Article and Find Full Text PDFBackground And Purpose: Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low.
Experimental Approach: Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine.
Macrolides, polyketide natural products, and their 15-membered semi-synthetic derivatives are composed of substituted macrocyclic lactone ring and used primarily as potent antibiotics. Recently their usefulness was extended to antimalarial and anti-inflammatory area. Hybrid macrolides presented in this article are the next generation semi-synthetic compounds that combine pharmacophores from antibacterial, antimalarial and anti-inflammatory area with 14- and 15-membered azalide scaffolds.
View Article and Find Full Text PDFMacrolones are a new class of antimicrobial compounds consisting of a macrolide scaffold linked to a 4-quinolone-3-carboxylic acid moiety via C(4″) position of a macrolide. As macrolides are known to possess favorable pharmacokinetic properties by accumulating in inflammatory cells, in this study we determined the intensity of accumulation in human polymorphonuclear leukocytes (PMNs) of 57 compounds of the macrolone class and analyzed the relationship between the molecular structure and this cellular pharmacokinetic property. Accumulation of macrolones ranged from 0 to 5.
View Article and Find Full Text PDFNovel classes of antimalarial drugs are needed due to emerging drug resistance. Azithromycin, the first macrolide investigated for malaria treatment and prophylaxis, failed as a single agent and thus novel analogues were envisaged as the next generation with improved activity. We synthesized 42 new 9a-N substituted 15-membered azalides with amide and amine functionalities via simple and inexpensive chemical procedures using easily available building blocks.
View Article and Find Full Text PDFThree macrolides, clarithromycin, azithromycin and 11-O-Me-azithromycin have been selected for the construction of a series of new macrolone derivatives. Quinolone-linker intermediates are prepared by Sonogashira-type C(6)-alkynylation of 6-iodoquinolone precursors. The final macrolones, differing by macrolide moiety and substituents at the position N-1 of the quinolone or by the presence of an ethyl ester or free acid on the quinolone unit attached via a linker.
View Article and Find Full Text PDFA set of novel macrolones containing the flexible C8 basic linker and quinolone 3-(2'-hydroxyethyl)carboxamido group has been prepared and structurally characterized by NMR and IR spectroscopy, mass spectrometry and molecular modeling. The new compounds were evaluated in vitro against a panel of erythromycin-susceptible and erythromycin-resistant Gram-positive and Gram-negative bacterial strains. Compared to azithromycin, most of the compounds exhibited improved in vitro potency against the key respiratory pathogens.
View Article and Find Full Text PDFSynthesis, antibacterial activity and pharmacokinetic properties of a novel class of macrolide antibiotics-macrolones-derived from azithromycin, comprising oxygen atom(s) in the linker and either free or esterified quinolone 3-carboxylic group, are reported. Selected compounds showed excellent antibacterial potency towards key erythromycin resistant respiratory pathogens. However, the majority of compounds lacked good bioavailability.
View Article and Find Full Text PDFAzithromycin, a first member of the azalide family of macrolides, while having substantial antimalarial activity, failed as a single agent for malaria prophylaxis. In this paper we present the first analogue campaign to identify more potent compounds from this class. Ureas and thioureas of 15-membered azalides, N''-substituted 9a-(N'-carbamoyl-β-aminoethyl), 9a-(N'-thiocarbamoyl-β-aminoethyl), 9a-[N'-(β-cyanoethyl)-N'-(carbamoyl-β-aminoethyl)], 9a-[N'-(β-cyanoethyl)-N'-(thiocarbamoyl-β-aminoethyl)], 9a-{N'-[β-(ethoxycarbonyl)ethyl]-N'(carbamoyl-β-aminoethyl)}, and 9a-[N'-(β-amidoethyl)-N'-(carbamoyl-β-aminoethyl)] of 9-deoxo-9-dihydro-9a-aza-9a-homoerythromycin A, were synthesized and their biological properties evaluated.
View Article and Find Full Text PDFA series of novel ureas and thioureas of 3-decladinosyl-3-hydroxy 15-membered azalides, were discovered, structurally characterized and biologically evaluated. They have shown good antibacterial activity against selected Gram-positive and Gram-negative bacterial strains. These include N″ substituted 9a-(N'-carbamoyl-γ-aminopropyl)- (6a,c), 9a-(N'-thiocarbamoyl-γ-aminopropyl)- (7a,e), 9a-[N'-(β-cyanoethyl)-N'-(carbamoyl-γ-aminopropyl)]- (9a-c, 9g) 9a-[N'-(β-cyanoethyl)-N'-(thiocarbamoyl-γ-aminopropyl)]-derivatives (10d-f) of 5-O-desosaminyl-9-deoxo-9-dihydro-9a-aza-9a-homoerythronolide A (3).
View Article and Find Full Text PDFA series of novel 6-O-substituted and 6,12-di-O-substituted 8a-aza-8a-homoerythromycin A and 9a-aza-9a-homoerythromycin A ketolides were synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and erythromycin-resistant test strains. Another series of ketolides based on 14-membered erythromycin oxime scaffold was also synthesized and their antibacterial activity compared to those of 15-membered azahomoerythromycin analogues. In general, structure-activity studies have shown that 14-membered ketolides displayed favorable antibacterial activity in comparison to their corresponding 15-membered analogues within 9a-azahomoerythromycin series.
View Article and Find Full Text PDFFour macrolides-6-O-methyl-8a-aza-8a-homoerythromycin, clarithromycin, azithromycin and azithromycin 11,12-cyclic carbonate, have been selected for the construction of a series of new quinolone derivatives. The quinolone moiety is connected to the macrolide scaffold via a diaminoaklyl 4''-O-propionyl ester chain of varying length. At the terminus the linker is attached via one of the nitrogen atoms in the linker at C(6) or C(7) of the quinolone.
View Article and Find Full Text PDFA series of 4''-O-acyl derivatives of 8a-aza-8a-homoerythromycins A were synthesized and tested against Gram-positive and Gram-negative bacteria. Derivatives of 8a-aza-8a-homoerythromycin A have potent anti-bacterial activity against not only azithromycin-susceptible strains, but also efflux (M) and inducible macrolide-lincosamide-streptogramin-resistant Gram-positive pathogens. These compounds show moderate to high clearance and low oral bioavailability in preliminary in vivo pharmacokinetic studies in rat.
View Article and Find Full Text PDFA series of 3-keto and 3-O-acyl derivatives of both 6-O-alkyl-8a-aza-8a-homoerythromycin A and 6-O-alkyl-9a-aza-9a-homo-erythromycin A were synthesised and tested against Gram-positive and Gram-negative bacteria. Derivatives of 8a-aza-8a-homoerythromycin A have potent antibacterial activity against not only azithromycin-susceptible strains, but also efflux (M) and inducible macrolide-lincosamide-streptogramin (iMLSB) resistant Gram-positive pathogens, while the corresponding 9a-isomers were less active. Introduction of an additional ring such as 11,12-cyclic carbonate reduced antibacterial activity of both series.
View Article and Find Full Text PDFNine bispyridinium oximes containing two pyridinium rings linked by dimethylether were synthesised. Each compound had on one of the pyridinium rings a hydroxyiminomethyl group in position 2 or 4, while the other ring was unsubstituted or had a methyl or a hydroxyiminomethyl group in position 2 or 4. The reactivating potency and therapeutic effect of the oximes were tested on two organophosphates: O,O-dimethyl-2,2-dichlorovinylphosphate (DDVP) and O-ethyl-S-(2-diisopropylaminoethyl)-methylphosphonothioate (VX).
View Article and Find Full Text PDF