As a collective organized to address the education implications of calls for public health engagement on the ecological determinants of health, we, the Ecological Determinants Group on Education (cpha.ca/EDGE), urge the health community to properly understand and address the importance of the ecological determinants of the public's health, consistent with long-standing calls from many quarters-including Indigenous communities-and as part of an eco-social approach to public health education, research and practice. Educational approaches will determine how well we will be equipped to understand and respond to the rapid changes occurring for the living systems on which all life-including human life-depends.
View Article and Find Full Text PDFTumor necrosis factor-α (TNFα), is a pathogenic cytokine in kidney disease that alters expression of claudins in tubular cells. Previously we showed that in LLC-PK cells TNFα caused a biphasic change in transepithelial resistance (TER) consisting of an early drop and recovery, followed by a late increase. However, the underlying mechanisms and the role of specific claudins in the TER effect remained incompletely understood.
View Article and Find Full Text PDFThe inflammatory cytokine tumor necrosis factor-α (TNF-α) is a pathogenic factor in acute and chronic kidney disease. TNF-α is known to alter expression of epithelial tight junction (TJ) proteins; however, the underlying mechanisms and the impact of this effect on epithelial functions remain poorly defined. Here we describe a novel biphasic effect of TNF-α on TJ protein expression.
View Article and Find Full Text PDFTransactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α-induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway.
View Article and Find Full Text PDFHyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control.
View Article and Find Full Text PDFProteins of the Rho family of small GTPases are central regulators of the cytoskeleton, and control a large variety of cellular processes, including cell migration, gene expression, cell cycle progression and cell adhesion. Rho proteins are molecular switches that are active in GTP-bound and inactive in GDP-bound state. Their activation is mediated by a family of Guanine-nucleotide Exchange Factor (GEF) proteins.
View Article and Find Full Text PDFThe regulation and maintenance of the paracellular transport in renal tubular epithelia is vital for kidney functions. Combination of the immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) exerts powerful immunosuppression, but also causes nephrotoxicity. We have previously shown that CsA and SRL elevate transepithelial resistance (TER) in kidney tubular cells partly through MEK/ERK1/2.
View Article and Find Full Text PDFPre-B cell colony-enhancing factor ([PBEF] also known as Nampt/visfatin) is a pleiotropic 52-kDa cytokine-like molecule whose activity has been implicated in multiple inflammatory disease states. PBEF promotes polymorphonuclear neutrophil (PMN) proinflammatory function by inhibiting constitutive PMN apoptosis. We investigated whether PBEF activates or primes for PMN respiratory burst.
View Article and Find Full Text PDFTumor necrosis factor (TNF)-α induces cytoskeleton and intercellular junction remodeling in tubular epithelial cells; the underlying mechanisms, however, are incompletely explored. We have previously shown that ERK-mediated stimulation of the RhoA GDP/GTP exchange factor GEF-H1/Lfc is critical for TNF-α-induced RhoA stimulation. Here we investigated the upstream mechanisms of ERK/GEF-H1 activation.
View Article and Find Full Text PDFPlasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular K(+) concentration, the lipophilic cation tetraphenylphosphonium, or l-alanine, which is taken up by electrogenic Na(+) cotransport) all provoke robust phosphorylation of ERK in LLC-PK1 and Madin-Darby canine kidney (MDCK) cells.
View Article and Find Full Text PDFTumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-alpha, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-alpha on the Rho pathway in tubular cells (LLC-PK(1) and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-alpha-induced alterations of paracellular permeability.
View Article and Find Full Text PDF