Survival in dynamic environments requires that organisms learn to predict danger from situational cues. One key facet of threat prediction is generalization from a predictive cue to similar cues, ensuring that a cue-outcome contingency is applied beyond the original learning environment. Generalization has been observed in laboratory studies of aversive conditioning: Behavioral and physiological processes generalize responses from a stimulus paired with threat (the conditioned stimulus [CS+]) to unpaired stimuli, with response magnitudes varying with CS+ similarity.
View Article and Find Full Text PDFBackground: Experience changes visuo-cortical tuning. In humans, re-tuning has been studied during aversive generalization learning, in which the similarity of generalization stimuli (GSs) with a conditioned threat cue (CS+) is used to quantify tuning functions. Previous work utilized pre-defined tuning shapes (generalization and sharpening patterns).
View Article and Find Full Text PDFExperience changes the tuning of sensory neurons, including neurons in retinotopic visual cortex, as evident from work in humans and non-human animals. In human observers, visuo-cortical re-tuning has been studied during aversive generalization learning paradigms, in which the similarity of generalization stimuli (GSs) with a conditioned threat cue (CS+) is used to quantify tuning functions. This work utilized pre-defined tuning shapes reflecting prototypical generalization (Gaussian) and sharpening (Difference-of-Gaussians) patterns.
View Article and Find Full Text PDFSurvival in dynamic environments requires that organisms learn to predict danger from situational cues. One key facet of threat prediction is generalization from a predictive cue to similar cues, ensuring that a cue-outcome contingency is applied beyond the original learning environment. Generalization has been observed in laboratory studies of aversive conditioning: behavioral and physiological processes generalize responses from a stimulus paired with threat (the CS+) to unpaired stimuli, with response magnitudes varying with CS+ similarity.
View Article and Find Full Text PDFPairing a neutral stimulus with aversive outcomes prompts neurophysiological and autonomic changes in response to the conditioned stimulus (CS+), compared to cues that signal safety (CS-). One of these changes-selective amplitude reduction of parietal alpha-band oscillations-has been reliably linked to processing of visual CS+. It is, however, unclear to what extent auditory conditioned cues prompt similar changes, how these changes evolve as learning progresses, and how alpha reduction in the auditory domain generalizes to similar stimuli.
View Article and Find Full Text PDFMisophonia is characterized by excessive aversive reactions to specific "trigger" sounds. Although this disorder is increasingly recognized in the literature, its etiological mechanisms and maintaining factors are currently unclear. Several etiological models propose a role of Pavlovian conditioning, an associative learning process heavily researched in similar fear and anxiety-related disorders.
View Article and Find Full Text PDF