Publications by authors named "Faisal M Syed"

One of the commonly used parameters for evaluating aortic regurgitation is the rate of pressure decay data obtained from echocardiographic evaluation or cardiac catheterization. The measurement of the rate of equalization of pressure between the aorta and the left ventricle and its utility in the setting of aortic insufficiency has been validated. Intuitively, the Doppler equivalent, pressure half-time, is inversely related to the severity of regurgitation.

View Article and Find Full Text PDF

Beta-adrenergic receptor (betaAR) blockade is a standard therapy for cardiac failure and ischemia. G protein-coupled receptor kinases (GRKs) desensitize betaARs, suggesting that genetic GRK variants might modify outcomes in these syndromes. Re-sequencing of GRK2 and GRK5 revealed a nonsynonymous polymorphism of GRK5, common in African Americans, in which leucine is substituted for glutamine at position 41.

View Article and Find Full Text PDF

Background: Pathological cardiac hypertrophy inevitably remodels, leading to functional decompensation. Although modulation of apoptosis-regulating genes occurs in cardiac hypertrophy, a causal role for programmed cardiomyocyte death in left ventricular (LV) remodeling has not been established.

Methods And Results: We targeted the gene for proapoptotic Nix, which is transcriptionally upregulated in pressure overload and Gq-dependent hypertrophies, in the mouse germ line or specifically in cardiomyocytes (knockout [KO]) and conditionally overexpressed it in the heart (transgenic [TG]).

View Article and Find Full Text PDF

Following myocardial infarction, nonischemic myocyte death results in infarct expansion, myocardial loss, and ventricular dysfunction. Here, we demonstrate that a specific proapoptotic gene, Bnip3, minimizes ventricular remodeling in the mouse, despite having no effect on early or late infarct size. We evaluated the effects of ablating Bnip3 on cardiomyocyte death, infarct size, and ventricular remodeling after surgical ischemia/reperfusion (IR) injury in mice.

View Article and Find Full Text PDF

Galphaq, encoded by the human GNAQ gene, is an effector subunit of the Gq heterotrimeric G-protein and the convergence point for signaling of multiple Gq-coupled neurohormonal receptors. To identify naturally occurring mutations that could modify GNAQ transcription, we examined genomic DNA isolated from 355 normal subjects for genetic variants in transcription factor binding motifs. Of seven variants identified, the most common was a GC to TT dinucleotide substitution at -694/-695 (allele frequency of 0.

View Article and Find Full Text PDF

Hemodynamic assessment is a constant and common task in critically ill and injured patients. Correct interpretation of this data is vital to implement the appropriate intervention, if any. It can be difficult to properly interpret derived and measured data from a pulmonary artery catheter for optimal care of these difficult patients.

View Article and Find Full Text PDF

Caspase-1/interleukin-converting enzyme (ICE) is a cysteine protease traditionally considered to have importance as an inflammatory mediator, but not as an apoptotic effector. Because of the dual functions of this caspase, the pathophysiological impact of its reported upregulation in hypertrophy and heart failure is not known. Here, the consequences of increased myocardial expression of procaspase-1 were examined on the normal and ischemically injured heart.

View Article and Find Full Text PDF

In the present study, we evaluated tuftsin bearing nystatin liposomes for their potential against an isolate of Candida albicans (C. albicans) showing less in vivo susceptibility to amphotericin B (Amp B). The liposomised-Amp B in higher doses was found to be effective in elimination of less susceptible strain of C.

View Article and Find Full Text PDF

In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response.

View Article and Find Full Text PDF