Publications by authors named "Faisal K Algethami"

Article Synopsis
  • Excessive use of pesticides on oranges has led to harmful residue buildup, posing serious health risks.
  • Researchers developed a silica material (ormosil) to effectively extract two specific pesticides, chlorpyrifos and triazophos, from orange juice.
  • The ormosil demonstrated strong removal efficiency with consistent performance across multiple uses, showcasing its potential for food safety analysis.
View Article and Find Full Text PDF

This work represents an innovative approach to the synthesis and characterization of a chitosan-based biocomposite for fluoride adsorption. The work involved the development of a biocomposite based on modified chicken bone waste-derived hydroxyapatite and TiO. The composite was characterized using scanning electron microscopy with Energy Dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared analysis (FTIR), thermal-gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

A ternary mixture incorporating Hydroxyzine hydrochloride (HYX), Ephedrine hydrochloride (EPH) and Theophylline (THP) frequently prescribed for the treatment of respiratory diseases. Herein, two spectrophotometric methods are designated and applied to resolve these three components in their mixture. Method A is ratio-subtraction combined with derivative spectrophotometry, where THP can be determined directly at its λmax 271 nm (neither HYX or EPH interfere), then for determination of HYX and EPH, the ternary mixture was divided by 22 μg/mL of THP and after subtraction of the plateau region, HYX can be determined directly at its λmax 234.

View Article and Find Full Text PDF

A cost-effective, selective, sensitive, and operational TLC-densitometric approach has been adapted for the concurrent assay of Hydroxyzine Hydrochloride (HYX), Ephedrine Hydrochloride (EPH), and Theophylline (THP) in their pure powder and pharmaceutical forms. In the innovative TLC-densitometric approach, HYX, EPH, and THP were efficaciously separated and quantified on a 60F silica gel stationary phase with chloroform-ammonium acetate buffer (9.5:0.

View Article and Find Full Text PDF

The selective and sensitive detection of Al(III) is critically important for human health since the level of Al(III) is an indicator of many diseases in humans. Herein, we developed a simple and sensitive fluorescent sensor for the detection of Al(III) in an aqueous solution based on the fluorescence of hydroxyl-functionalized graphitic carbon nitride nanosheets (HO/g-CN). OH/g-CN nanosheets were synthesized the thermal pyrolysis of 1,3,5-triazine-2,4,6-triamine (as raw material) at 550 °C for 2 hours, followed by thermal alkali treatment at 730 °C for 2 min.

View Article and Find Full Text PDF
Article Synopsis
  • - The synthesis of novel hybrid molecules featuring thiazoles and bis-thiazoles linked to azo-sulfamethoxazole was achieved through a reaction in dioxane using triethylamine as a catalyst.
  • - The structural integrity of these new compounds was confirmed through various spectroscopic techniques.
  • - Antibacterial activity was assessed using the agar well-diffusion method, revealing significant potency in most compounds, while in silico studies showed strong interactions with key bacterial enzymes, indicating potential inhibitory effects.
View Article and Find Full Text PDF

There is growing demand for separation of Y carrier free from Sr coexisting to produce high purity Y essential for radiopharmaceutical uses. Thus, in this context the sorption profiles of Y and Sr from aqueous solutions containing diethylenetriaminepenta acetic acid (DTPA), ethylenediaminetetra-acetic acid (EDTA), acetic acid, citric acid, or NaCl onto Chelex-100 (anion ion exchange) solid sorbent were critically studied for developing an efficient and low-cost methodology for selective separation of Y from Sr ions (1.0 × 10 M).

View Article and Find Full Text PDF

Activated carbon/BiOI nanocomposites were successfully synthesized through a simplistic method. The produced composites were then characterized using XRD, TEM, SEM-EDX, and XPS. The results showed that BiOI with a tetragonal crystal structure had been formed.

View Article and Find Full Text PDF

The utilization of l-cysteine in hydrothermal synthesis allows for the manufacture of carbon dots (CDs) that are doped with heteroatoms including oxygen, nitrogen, and sulfur (N, S, O-doped CDs). CDs have a particle size ranging from 1 to 3 nm, with an average particle size of 2.5 nm.

View Article and Find Full Text PDF

Ensuring food security is crucial for public health, and the presence of mycotoxins, produced by fungi in improperly stored processed or unprocessed food, poses a significant threat. This research introduces a novel approach - a disposable aptasensing platform designed for the detection of ochratoxin A (OTA). The platform employs gold-nanostructured screen-printed carbon electrodes functionalized with a ferrocene derivative, serving as an integrated faradaic transducing system, and an anti-OTA aptamer as a bioreceptor site.

View Article and Find Full Text PDF

Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc.

View Article and Find Full Text PDF

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements.

View Article and Find Full Text PDF

In this study, I determined the essential oil (EO) chemical composition and crude methanol extract (ME) phytochemical profile of the leaves of Acacia gerrardii (ACGL), a plant growing in Saudi Arabia. Additionally, I assessed their in vitro antioxidant activity. The gas chromatography-mass spectrometry analysis of the EO revealed a high content of oxygenated monoterpenes (79.

View Article and Find Full Text PDF

Synthesis of dual-state dual emitting metal-organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic DSDE of chemically engineered bi-ligand Eu-based MOF (UoZ-1) was designed.

View Article and Find Full Text PDF

An ultra-efficient biocatalytic peroxidase-like Au-based single-atom nanozyme (Au-SAzymes) has been synthesized from isolated Au atoms on black nitrogen doped carbon (Au-N-C) using a simple complexation-adsorption-pyrolysis method. The atomic structure of AuN centers in black carbon was revealed by combined high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy. The Au-SAzymes showed a remarkable peroxidase activity with 1.

View Article and Find Full Text PDF

Sulfite is a very important species, affecting human health, plant and animal life, and environmental sustainability. In this study, for the first time, an ionophore-based ion-selective optode was constructed for hydrogen sulfite determination in beverages, such as Birell® and Sprite®, water, and soil samples; instead of normal pH-chromoionophores, polyaniline film was precipitated on a glass slide and used for the transduction of the sensation mechanism. The ionophore-modified polyaniline-based optode incorporated thiourea derivative as an ionophore and tridodecyl methyl ammonium chloride as an ion-exchanger.

View Article and Find Full Text PDF

An ultrasensitive capacitance-based biosensor has been developed capable of detecting the kanamycin (KAN) antibiotic at sub-femtomolar levels. The biosensor was constructed using a potential-pulse-assisted method, allowing for the layer-by-layer deposition of a melanin-like polymeric film (MLPF) on an electrode surface modified with gold nanoparticles (AuNPs). The MLPF was formed through the electrochemical polymerization of dopamine and the specific kanamycin aptamer.

View Article and Find Full Text PDF

The purpose of this paper was to evaluate the phytochemical profile of trunk bark methanol extract using LC-MS/MS, as well as to assess its antioxidant and anti-tyrosinase activities. Thus, total phenolic and flavonoid contents of the studied extract were established and 19 compounds were detected and quantified. In addition of their antioxidant potential against DPPH and ABTS assays, and studies were adopted to evaluate tyrosinase inhibitory property of extract.

View Article and Find Full Text PDF

Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy.

View Article and Find Full Text PDF

In the water purification field, heavy metal pollution is a problem that causes severe risk aversion. This study aimed to examine the disposal of cadmium and copper ions from aqueous solutions by a novel FeO/analcime nanocomposite. A field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction were used to characterize the synthesized products.

View Article and Find Full Text PDF

In pursuit of environmental safety, a novel and efficient method-dispersive solid-phase extraction based on functionalized mesoporous silica nanotubes (FMSNT nanoadsorbent)-was developed to remove tetrabromobisphenol A (TBBPA) from water samples. Characterization and comprehensive analysis of the FMSNT nanoadsorbent, including maximum adsorption capacity of 815.85 mg g for TBBPA and its water stability, confirmed its potential.

View Article and Find Full Text PDF

The effect of hydrophilic/lipophilic balance (HLB) of polyoxyethylene ethers of different chain lengths on the microporogenic properties of the Brij surfactants has been studied. The objective of this work is to help better understand the role of each porogen and to set criteria for selecting the proper non-ionic surfactant, based on the HLB value. Seven recipes of different porogen compositions were first prepared and the highest efficiency was achieved using decane/decanol/dodecanol mixture with Brij® 30.

View Article and Find Full Text PDF

In silico evaluation of aptamer/target interactions can facilitate the development of efficient biosensor with high specificity and affinity. In this work, we present in silico, i.e.

View Article and Find Full Text PDF

In this work, essential oils extracted from roots and aerial parts of Inula graveolens by hydrodistillation and their fractions obtained by chromatographic simplification were first investigated for their chemical composition by GC/MS and then evaluated for the first time for their repellency and contact toxicity properties against Tribolium castaneumadults. Twenty-eight compounds were identified in roots essential oil (REO), which accounted for 97.9 % of the total oil composition, with modhephen-8-β-ol (24.

View Article and Find Full Text PDF

Cadmium sulfide (CdS) quantum dots (QDs) were homogeneously embedded into chitosan (CTS), denoted as CdS@CTS, via an in situ hydrothermal method. The intact structure of the synthesized materials was preserved using freeze-drying. The materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM, scanning TEM, dispersive energy X-ray (EDX) for elemental analysis and mapping, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, thermogravimetric analysis, UV-vis spectroscopy, and diffuse reflectance spectroscopy (DRS).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9u10kbb1kdkj3j8ir8nvngpu94ive64d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once