Publications by authors named "Faisal Fecto"

Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders.

View Article and Find Full Text PDF

Mutations in the gene encoding ubiquilin2 (UBQLN2) cause amyotrophic lateral sclerosis (ALS), frontotemporal type of dementia, or both. However, the molecular mechanisms are unknown. Here, we show that ALS/dementia-linked UBQLN2(P497H) transgenic mice develop neuronal pathology with ubiquilin2/ubiquitin/p62-positive inclusions in the brain, especially in the hippocampus, recapitulating several key pathological features of dementia observed in human patients with UBQLN2 mutations.

View Article and Find Full Text PDF

Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant.

View Article and Find Full Text PDF

Many progressive neurodegenerative diseases, including Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal lobe dementia, are associated with the formation of insoluble intracellular proteinaceous inclusions. It is therefore imperative to understand the factors that regulate normal, as well as abnormal, protein recycling in neurons. Dysfunction of the ubiquitin-proteasome or autophagy pathways might contribute to the pathology of various neurodegenerative diseases.

View Article and Find Full Text PDF

Recent findings highlight a pathologic and functional convergence in amyotrophic lateral sclerosis (ALS) and amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD) at the level of protein recycling and disposal. Genes linked to rare cases of familial ALS and ALS-FTD, like UBQLN2, OPTN, SQSTM1/p62, and VCP, may converge onto a unifying pathogenic pathway and thereby provide novel therapeutic targets common to a spectrum of etiologically diverse forms of ALS and ALS-FTD. Interactions between these genes need to be further explored to understand their common molecular pathways.

View Article and Find Full Text PDF

Background: The SQSTM1 gene encodes p62, a major pathologic protein involved in neurodegeneration.

Objective: To examine whether SQSTM1 mutations contribute to familial and sporadic amyotrophic lateral sclerosis (ALS).

Design: Case-control study.

View Article and Find Full Text PDF

Over the last couple of decades, there has been a growing body of clinical, genetic, and histopathological evidence that similar pathological processes underlie amyotrophic lateral sclerosis (ALS) and some types of frontotemporal lobe dementia (FTD). Even though there is great diversity in the genetic causes of these disorders, there is a high degree of overlap in their histopathology. Genes linked to rare cases of familial ALS and/or FTD, like FUS, TARDBP, OPTN, and UBQLN2 may converge onto a unifying pathogenic pathway and thereby provide novel therapeutic targets common to a spectrum of etiologically diverse forms of ALS and ALS-FTD.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS.

View Article and Find Full Text PDF

Background: Mutations in optineurin have recently been linked to amyotrophic lateral sclerosis (ALS).

Objective: To determine whether optineurin-positive skeinlike inclusions are a common pathologic feature in ALS, including SOD1 -linked ALS.

Design: Clinical case series.

View Article and Find Full Text PDF

Mutations in TRPV4 have been linked to three distinct axonal neuropathies. However, the pathogenic mechanism underlying these disorders remains unclear. Both gain and loss of calcium channel activity of the mutant TRPV4 have been suggested.

View Article and Find Full Text PDF

We report a case of familial amyotrophic lateral sclerosis (FALS) with clinical signs of cerebellar and posterior column involvement. The patient's work-up showed a known mutation (E100K) in the gene for Cu/Zn superoxide dismutase 1 (SOD1). Our case illustrates that extramotor symptoms, such as prominent cerebellar signs, can be seen in patients with FALS.

View Article and Find Full Text PDF

Objective: Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases.

View Article and Find Full Text PDF

Scapuloperoneal spinal muscular atrophy (SPSMA) and hereditary motor and sensory neuropathy type IIC (HMSN IIC, also known as HMSN2C or Charcot-Marie-Tooth disease type 2C (CMT2C)) are phenotypically heterogeneous disorders involving topographically distinct nerves and muscles. We originally described a large New England family of French-Canadian origin with SPSMA and an American family of English and Scottish descent with CMT2C. We mapped SPSMA and CMT2C risk loci to 12q24.

View Article and Find Full Text PDF

Aim: The present study deals with the investigation of mechanisms involved in the synergistic interaction between epinephrine and arachidonic acid (AA).

Methods: Venous blood was taken from healthy human volunteers reported to be free of medications for one week. Platelet aggregation was monitored at 37 degree using Dual-channel Lumi-aggregometer.

View Article and Find Full Text PDF