In this work, we have ultrasonically deposited Cu and Pd nanoparticles on BiS nanoparticles, prepared using an ultrasonication assisted hydrothermal method. We implemented intense ultrasonic waves bearing frequency of 20 kHz and power of 750 W at the acoustic wavelength of 100 mm to reduce Cu and Pd nanoparticles on the BiS surface. The XRD confirmed the formation of highly crystalline BiS nanoparticles with a pure orthorhombic phase and the deposition of copper (Cu) and palladium (Pd) nanoparticles was indicated by the strengthening and broadening of the peaks.
View Article and Find Full Text PDFMembrane-based desalination is essential for mitigating global water scarcity; yet, the process is energy-intensive and heavily reliant on fossil fuels, resulting in substantial carbon emissions. To address the challenges of treating seawater, produced water, brackish groundwater, and wastewater, we have developed a thin air gap membrane distillation (AGMD) system featuring a novel slippery condensing surface. The quasi-liquid slippery surface facilitates efficient condensate water droplet removal, allowing for the implementation of a 1 mm thin air gap.
View Article and Find Full Text PDFThe urgency of addressing water scarcity and exponential population rise has necessitated the use of sustainable desalination for clean water production, while conventional thermal desalination processes consume fossil fuel with brine rejection. As a promising solution to sustainable solar thermal distillation, we report a scalable mangrove-mimicked device for direct solar vapor generation and passive salt collection without brine discharge. Capillarity-driven salty water supply and continuous vapor generation are ensured by anti-corrosion porous wicking stem and multi-layer leaves, which are made of low-cost superhydrophilic nanostructured titanium meshes.
View Article and Find Full Text PDFThe emergence of two-dimensional (2D) MXenes as efficient light-to-heat conversion materials offers significant potential for solar-based desalination, particularly in photothermal interfacial evaporation, enabling cost-effective solar-powered membrane distillation (MD). This study investigates solar-powered MD afforded by a photothermally functionalized spacer, which is built by spray-coating TiCT MXene sheets on metallic spacers. 2D TiCT MXene gives an ultrahigh photothermal conversion efficiency; thereby, by TiCT MXene-coated metallic spacer, this rationally designed spacer allows for a localized photothermal conversion and interfacial feed heating effect on the membrane surface, especially for MD operation.
View Article and Find Full Text PDFHigh energy demand required in membrane distillation (MD) process to heat feed water and maintain the necessary temperature gradient across the membrane presents a challenge to widespread adoption of MD. In response to this challenge, surface heating membrane distillation (SHMD) has emerged as a promising solution. SHMD can employ solar or electrical energy to directly heat the membrane and feed, eliminating the need for an external heat source to heat feed water.
View Article and Find Full Text PDFReverse osmosis (RO) membrane-based desalination system with various configurations has emerged as a critical option for reclaiming brackish water. This study aims to evaluate the environmental performance of the combination of photovoltaic-reverse osmosis (PVRO) membrane treatment system via life cycle assessment (LCA). The LCA was calculated using SimaPro v9 software with ReCiPe 2016 methodology and EcoInvent 3.
View Article and Find Full Text PDFTo address the growing global need for freshwater, it has become essential to use nonpotable saline water. Solar membrane distillation is a potential desalination method that does not need conventional electricity and may cut water production costs. In this study, we develop a photothermal surface heating membrane distillation using a new class of photothermal spacers constructed with TiCT MXene-based nanocomposites.
View Article and Find Full Text PDFLiquid-particle interactions at the micro-scale are quite different from the corresponding macro-scale interactions due to the substantial role of capillary forces. Herein, we explore the interaction of a single micro-particle with an air-liquid-substrate contact line. The interaction features ballistic-like motion of micro-particles toward the interacting three-phase contact line with velocities as high as 0.
View Article and Find Full Text PDFHydrogen (H) is a green and economical substitute to traditional fossil fuels due to zero carbon emissions. Water splitting technology is developing at a rapid speed to sustainably generate H through electro- and photolysis of water without the harmful emissions associated with steam methane reforming. Development of efficient catalysts for the hydrogen evolution reaction (HER) is pertinent for economical green H generation.
View Article and Find Full Text PDFMembrane-on-chip is of growing interest in a wide variety of high-throughput environmental and water research. Advances in membrane technology continuously provide novel materials and multi-functional structures. Yet, the incorporation of membrane into microfluidic devices remains challenging, thus limiting its versatile utilization.
View Article and Find Full Text PDFAlthough free-standing sheets of multiwalled carbon nanotubes (MWCNT) can provide interesting electrochemical and physical properties as electrodes for redox flow batteries, the full potential of this class of materials has not been accessible as of yet. The conventional fabrication methods produce sheets with micro-porous and meso-porous structures, which significantly resist mass transport of the electrolyte during high-current flow-cell operation. Herein, we developed a method to fabricate high performance macro-porous carbon nano-foam free standing sheets (Puffy Fibers, PF), by implementing a freeze-drying step into our low cost and scalable surface-engineered tape-casting (SETC) fabrication method, and we show the improvement in the performance attained as compared with a MWCNT sheet lacking any macro pores (Tape-cast, TC).
View Article and Find Full Text PDF