Purpose: Studies comparing tensile bond strength of various soft and hard denture liner materials to conventionally and additively manufactured denture base resins are lacking. The purpose of this study was to investigate the tensile bond strength between chair- and laboratory-side soft and hard relining materials and denture-base materials produced by additive manufacturing and conventional methods.
Materials And Methods: A total of 120 dimethacrylate-based additively manufactured and polymethylmethacrylate (PMMA)-based conventionally fabricated dumbbell-shaped denture-base resins were produced.
Purpose: The objective of this study was to determine whether the addition of different types of boron (Borax, Boric Acid and Colemanite) to polymethyl methacrylate denture base resin would improve flexural and impact strengths, and surface hardness of polymethyl methacrylate.
Materials And Methods: Borax, Boric acid, Colemanite were added to heat polymerized polymethyl methacrylate specimens were prepared for flexural strength (65x10x2.5 mm), impact strength (50x6x4 mm), and hardness (20x6x4 mm) tests according to the manufacturers' instructions (n=10).
Background/purpose: Air-particle abrasion process used to increase surface roughness in order to increase metal-ceramic bond strength varies in each study. This study aims to optimize the air-particle abrasion protocol.
Material And Methods: 820 cylindrical nickel-chrome specimens divided equally into 82 groups (n:10).
Purpose: The bond strength of soft denture liner to a recently introduced denture base resin after thermocycling has not been compared to traditional denture base materials. The objective of this study was to investigate the effects of thermocycling on the tensile bond strength of soft denture liners to two chemically different denture base resins, polymethyl methacrylate (PMMA) and urethane dimethacrylate (UDMA).
Materials And Methods: A total of 48 PMMA and UDMA tensile test specimens were fabricated by attaching two different soft denture liners (Molloplast-B, Permaflex) according to the manufacturers' instructions and assigned to two groups.
Objective: The purpose of this study was to investigate the effects of various surface pretreatments in the ridge lap area of acrylic resin denture teeth on the shear bond strength to heat-polymerized polymethylmethacrylate (PMMA) denture base resin.
Background Data: Tooth debonding of the denture is a major problem for patients with removable prostheses.
Methods: A total of 84 central incisor denture teeth were used in this study.
Purpose: Denture base resins have the potential to cause cytotoxicity in vivo, and the mechanical properties of resins are affected by water sorption. There is a correlation between residual monomer and water sorption. Thus, the purpose of this study was to evaluate water sorption and cytotoxicity of light-activated urethane dimethacrylate (UDMA) denture base resin compared to a conventional heat-activated polymethyl methacrylate (PMMA) resin.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the bonding properties of denture bases to silicone-based soft denture liners immersed in isobutyl methacrylate (iBMA) and 2-hydroxyethyl methacrylate (HEMA) for various lengths of time.
Materials And Methods: Polymethyl methacrylate (PMMA) test specimens were fabricated (75 mm in length, 12 mm in diameter at the thickest section, and 7 mm at the thinnest section) and then randomly assigned to five groups (n=15); untreated (Group 1), resilient liner immersed in iBMA for 1 minute (Group 2), resilient liner immersed in iBMA for 3 minutes (Group 3), resilient liner immersed in HEMA for 1 minute (Group 4), and resilient liner immersed in HEMA for 3 minutes (Group 5). The resilient liner specimens were processed between 2 PMMA blocks.
Purpose: Debonding of acrylic teeth from the denture base remains a major problem in prosthodontics. The objective of this study was to evaluate the effect of various surface treatments on the shear bond strength of the two chemically different denture base resins-polymethyl methacrylate (PMMA) and urethane dimethacrylate (UDMA).
Materials And Methods: Two denture base resins, heat-cured PMMA (Meliodent) and light-activated UDMA (Eclipse), were used in this study.
Purpose: To investigate the bond strength of low-fusing porcelain to commercially pure titanium (Ti) that was laser irradiated with different levels of energy and sandblasted.
Materials And Methods: A total of 30 titanium rods (10 mm in length and 12 mm in diameter) were prepared. The rods were divided into three groups (n = 10) according to surface treatments: SB: sandblasted; L1: Nd:YAG laser irradiated at 100 mJ, 10 Hz, and 1 W; L2: Nd:YAG laser irradiated at 200 mJ, 10 Hz, and 2 W.
This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation.
View Article and Find Full Text PDFThe objective of this study was to investigate the effect of Er:YAG laser irradiation on shear bond strength and microleakage between resin cements and yttrium-stabilized tetragonal zirconia (Y-TZP) ceramics. Eighty disc specimens of Y-TZP ceramics (6 mm × 4 mm) were prepared. The specimens were divided into two groups according to surface treatment (control and Er:YAG laser-treated).
View Article and Find Full Text PDFThe purpose of this study was to investigate the tensile strength of the bond between a silicone lining material and heat-cured polymethyl methacrylate (PMMA) denture base resin after Er:YAG laser treatment with different pulse durations and energy levels. PMMA test specimens were fabricated and each received one of six surface treatments: no treatment (control), and five Er:YAG laser treatments comprising (1) 100 mJ, 1 W, long pulse duration, (2) 200 mJ, 2 W, long pulse duration, (3) 200 mJ, 2 W, very short pulse duration, (4) 300 mJ, 3 W, long pulse duration, and (5) 400 mJ, 4 W, long pulse duration. The resilient liner specimens (n = 15) were processed between two PMMA blocks.
View Article and Find Full Text PDFFailure of the bond between the acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to investigate the effect of different surface treatments (sandblasting, Er:YAG, Nd:YAG, and KTP lasers) on tensile bond strength of silicone-based soft denture liner. Polymethyl methacrylate test specimens were fabricated and each received one of eight surface treatments: untreated (control), sandblasted, Er:YAG laser irradiated, sandblasted + Er:YAG laser irradiated, Nd:YAG laser irradiated, sandblasted + Nd:YAG laser irradiated, KTP laser irradiated, and sandblasted + KTP laser irradiated.
View Article and Find Full Text PDF