Publications by authors named "Faical Ndairou"

The COVID-19 pandemic has presented unprecedented challenges worldwide, necessitating effective modelling approaches to understand and control its transmission dynamics. In this study, we propose a novel approach that integrates asymptomatic and super-spreader individuals in a single compartmental model. We highlight the advantages of utilizing incommensurate fractional order derivatives in ordinary differential equations, including increased flexibility in capturing disease dynamics and refined memory effects in the transmission process.

View Article and Find Full Text PDF

A fractional compartmental mathematical model for the spread of the COVID-19 disease is proposed. Special focus has been done on the transmissibility of super-spreaders individuals. Numerical simulations are shown for data of Galicia, Spain, and Portugal.

View Article and Find Full Text PDF

We correct some numerical results of [Chaos Solitons Fractals 135 (2020), 109846], by providing the correct numbers and plots. The conclusions of the paper remain, however, the same. In particular, the numerical simulations show the suitability of the proposed COVID-19 model for the outbreak that occurred in Wuhan, China.

View Article and Find Full Text PDF

We propose a compartmental mathematical model for the spread of the COVID-19 disease with special focus on the transmissibility of super-spreaders individuals. We compute the basic reproduction number threshold, we study the local stability of the disease free equilibrium in terms of the basic reproduction number, and we investigate the sensitivity of the model with respect to the variation of each one of its parameters. Numerical simulations show the suitability of the proposed COVID-19 model for the outbreak that occurred in Wuhan, China.

View Article and Find Full Text PDF