Publications by authors named "Fai-Kait Chong"

Article Synopsis
  • Rapid population growth and industrial expansion are leading to significant water contamination issues, necessitating effective treatment methods.
  • Titanium dioxide (TiO) is highlighted as a promising and versatile nanoparticle for water treatment, known for its availability, low cost, and efficiency.
  • The review covers TiO synthesis methods, progress in its photocatalytic applications for degrading pollutants, and future developments in designing new nanomaterials for environmental sustainability.
View Article and Find Full Text PDF

One of the most significant chemical operations in the past century was the Haber-Bosch catalytic synthesis of ammonia, a fertilizer vital to human life. Many catalysts are developed for effective route of ammonia synthesis. The major challenges are to reduce temperature and pressure of process and to improve conversion of reactants produce green ammonia.

View Article and Find Full Text PDF

Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment.

View Article and Find Full Text PDF

The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.

View Article and Find Full Text PDF

The importance of graft copolymerization in the field of polymer science is analogous to the importance of alloying in the field of metals. This is attribute to the ability of the grafting method to regulate the properties of polymer 'tailor-made' according to specific needs. This paper described a novel plant-based coagulant, LE-g-DMC that synthesized through grafting of 2-methacryloyloxyethyl trimethyl ammonium chloride (DMC) onto the backbone of the lentil extract.

View Article and Find Full Text PDF

In this study, a series of TiO nanotubes (NTs) were synthesized employing electrochemical anodization of titanium foil in an ionic liquid solution containing a mixture of glycerol and choline chloride, acting as electrolyte. The as-synthesized TiO NTs were calcined at 350, 450, or 550 °C for a 2 h duration to investigate the influence of calcination temperature on NTs formation, morphology, surface properties, crystallinity, and subsequent photocatalytic activity for visible light photodegradation of gaseous formaldehyde (HCHO). Results showed that the calcination temperature has a significant effect on the structure and coverage of TiO NTs on the surface.

View Article and Find Full Text PDF

Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2.

View Article and Find Full Text PDF