Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain.
View Article and Find Full Text PDFThe determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins.
View Article and Find Full Text PDFMolecular determinants regulating the activation of class B G-protein-coupled receptors (GPCRs) by native peptide agonists are largely unknown. We have investigated here the interaction between the corticotropin releasing factor receptor type 1 (CRF1R) and its native 40-mer peptide ligand Urocortin-I directly in mammalian cells. By incorporating unnatural amino acid photochemical and new click-chemical probes into the intact receptor expressed in the native membrane of live cells, 44 intermolecular spatial constraints have been derived for the ligand-receptor interaction.
View Article and Find Full Text PDFBinding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand.
View Article and Find Full Text PDFWe designed β-strand peptides that stabilize integral membrane proteins (IMPs). β-strand peptides self-assemble in solution as filaments and become restructured upon association with IMPs; resulting IMP-β-strand peptide complexes resisted aggregation when diluted in detergent-free buffer and were visible as stable, single particles with low detergent background in electron micrographs. β-strand peptides enabled clear visualization of flexible conformations in the highly dynamic ATP-binding cassette (ABC) transporter MsbA.
View Article and Find Full Text PDFThe smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.
View Article and Find Full Text PDFDrugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure.
View Article and Find Full Text PDFThe signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo.
View Article and Find Full Text PDFThe signal recognition particle (SRP) targets nascent proteins to cellular membranes for insertion or secretion by recognizing polypeptides containing an N-terminal signal sequence as they emerge from the ribosome. GTP-dependent binding of SRP to its receptor protein leads to controlled release of the nascent chain into a membrane-spanning translocon pore. Here we show that the association of the SRP with its receptor triggers a marked conformational change in the complex, localizing the SRP RNA and the adjacent signal peptide-binding site at the SRP-receptor heterodimer interface.
View Article and Find Full Text PDFTranscription from the ASNS (asparagine synthetase) gene is increased in response to either amino acid (amino acid response) or glucose (endoplasmic reticulum stress response) deprivation. These two independent pathways converge on the same set of genomic cis-elements within the ASNS promoter, referred to as nutrient-sensing response element-1 and -2. Chromatin immunoprecipitation analysis provides the first in vivo evidence for activating transcription factor (ATF)-3 binding to the proximal ASNS promoter containing the nutrient-sensing response element-1 sequence.
View Article and Find Full Text PDFTranscription from the asparagine synthetase (A.S.) gene is increased in response to either amino acid (amino acid response) or glucose (endoplasmic reticulum stress response) deprivation.
View Article and Find Full Text PDF