The dynamics of the H((2)S) + FO((2)Pi) --> OH((2)Pi) + F((2)P) reaction on the adiabatic potential energy surface of the 1(3)A' and 1(3)A'' states is investigated. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by using the quantum mechanical real wave packet method. The integral cross sections and initial state selected reaction rate constants have been obtained from the corresponding J = 0 reaction probabilities by means of the simple J-Shifting technique.
View Article and Find Full Text PDFJ Comput Chem
September 2008
Quantum mechanical wave packet calculations are carried out for the H((2)S) + FO((2)II) --> OH((2)II) + F((2)P) reaction on the adiabatic potential energy surface of the ground (3)A'' triplet state. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been estimated from the J = 0 results by using J-shifting approximation based on a capture model.
View Article and Find Full Text PDFThe Li + H2+(upsilon,j) --> LiH(upsilon',j') + H+ reactive scattering has been studied by using quantum real wave-packet method. The state-to-state and state-to-all reaction probabilities for the entitled collision have been calculated. The probabilities show a smooth variation for all initial rotational quantum states.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2006
We have studied a three-dimensional time-dependent quantum dynamics of He - O2 inelastic scattering by using a recently published ab initio potential energy surface. The state-to-state transition probabilities at zero total angular momentum have been calculated in the energy range of 0.12-0.
View Article and Find Full Text PDF