Publications by authors named "Fahmida Jabeen"

ATP upregulation is a significant driver of aggressive cancer cell phenotypes. Phosphometabolites participate in metabolic pathways and are overexpressed in cancer cell activity. Therefore, developing novel and accurate methods for detecting phosphometabolites in biological fluids is essential.

View Article and Find Full Text PDF

HILIC (hydrophilic interaction liquid chromatography) materials enrich glycopeptides. The non-specific interactions because of support material and inadequate hydrophilicity render loss of less abundant glycopeptides in SPE-based enrichments. In this work, magnetic terpolymer (FeO@MAA/DVB/1,2-Epoxy-5-hexene) is functionalized with Ranachrome-5 to generate enhanced hydrophilicity.

View Article and Find Full Text PDF

Phosphorylated metabolites are linked to metabolism, and the dysregulation of metabolic reactions brings cancer. Dysregulated levels lead to hyperactivation of glycolytic and mitochondrial oxidative phosphorylation pathways. Abnormal concentrations are the indicators of energy-related disorders.

View Article and Find Full Text PDF

Human serum N-linked glycans expression levels change during the disease progression. The low abundance, structural diversity, and coexisting matrices hinder their detection in mass spectrometry analysis. Considering the hydrophilic nature of N-glycans, cellulose/polymer (1,2-Epoxy-5-hexene) nanohybrid is fabricated with oxirane groups functionalized of asparagine to develop solid phase extraction based hydrophilic interaction liquid chromatography sorbent (cellulose/1,2-Epoxy-5-hexene/asparagine).

View Article and Find Full Text PDF

A new polymeric (methyl methacrylate/ethylene glycol dimethacrylate/1,2-epoxy-5-hexene) base/matrix has been fabricated and decorated with zwitterionic hydrophilic cysteic acid (Cya) for the enrichment of intact N-glycopeptides from standards and biological samples. Terpolymer-Cya provides good enrichment efficiency, improved hydrophilicity, and selectivity by virtue of better surface area (2.09 × 10 m/g) provided by terpolymer and the zwitterionic property offered by cysteic acid.

View Article and Find Full Text PDF

A three-step strategy is introduced to develop inherent iminodiacetic (IDA)-functionalized nanopolymer. SEM micrographs show homogenous spherical beads with a particle size of 500 nm. Further modification to COOH-functionalized 1,2-epoxy-5-hexene/DVB mesoporous nanopolymer enriches glycopeptides via hydrophilic interactions followed by their MS determination.

View Article and Find Full Text PDF

Apo-H is a plasma glycoprotein. Nearly 19% of the molecular weight of this protein is composed of glycans. Up- and down-regulation and structural changes in protein glycans provide diagnostic value for disease detection.

View Article and Find Full Text PDF

The surface of matrix-assisted laser desorption/ionization mass spectrometry target is modified for improved signal strength and detection of analytes. The developed method includes on-target enrichment and detection of phosphopeptides/phospholipids using graphene oxide-lanthanide metal oxides (samarium, gadolinium, dysprosium, and erbium) nanocomposites. Enriched phosphopeptides are detected using material enhanced laser desorption/ionization mass spectrometry and phospholipids by laser desorption/ionization-mass spectrometry.

View Article and Find Full Text PDF

A hydrophilic terpolymer MOF composite is designed with high surface area and porosity to enrich mono- and multi-glycosylated peptides facilitating a bottom-up approach. Terpolymer@ZIF-8 is synthesized using free radical polymerization followed by layer by layer ZIF-8 fabrication. Subsequent surface modification was made by aminophenylboronic acid (AMBA).

View Article and Find Full Text PDF

Highly specific enrichment of N-linked glycopeptides from complex biological samples is crucial prior to mass spectrometric analysis. In this work, a hydrophilic metal-organic framework composite is prepared by the growth of UiO-66-NH on graphene sheets, followed by its post-synthetic modification to attach boronic acid to form GO@UiO-66-PBA. The fabrication of graphene oxide-MOF composite results in enhanced surface area with improved thermal and chemical stability.

View Article and Find Full Text PDF

Enrichment of glycoproteins has been important because of their dynamicity and role in biological systems. Study of glycoproteins is complex because of the simultaneous glycosylation and deglycosylation inside the body. Often employed affinities for glycopeptides are hydrazide, boronic acid, or physiosorbed lectin on support materials.

View Article and Find Full Text PDF

Enrichment strategies are designed for the pretreatment of low-abundance glycans and glycopeptides prior to mass spectrometric (MS) analysis. Here, a tip-based strategy is being reported for the enrichment of glycopeptides and glycans using a piperazine modified polymeric monolithic tip. The tip is fabricated using the free radical polymerization.

View Article and Find Full Text PDF

An anion exchange solid-phase sorbent is described. Chitosan coated magnetite nanoparticles were modified with polyethylenimine which is positively charged at pH 3 and therefore can be used for the magnet-supported enrichment of phosphopeptides which are negatively charged at this pH value. A 2-step strategy was used to synthesize the sorbent.

View Article and Find Full Text PDF

High-density lipoproteins (HDLs) have anti-inflammatory and antioxidant properties and are potentially cardio-protective. Defective HDL function is caused by alterations in both the proteome and lipidome of HDL particles. As potential biomarkers, the development of analytical methods is necessary for the enrichment of HDLs.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are an eminent addition to materials science research because of their versatile properties due to which their applications are wide spread in proteomics. They are used in various fields due to their characteristics like higher surface area, specific symmetry, ease of modification, and availability of a variety of ligands. As affinity sorbents, they have shown higher selectivity, sensitivity, and reproducibility than conventionally used materials.

View Article and Find Full Text PDF

Polymeric monoliths fabricated in tips with embedded materials of choice are important in separation science. Polymeric backbone however interferes in the enrichment and thus affects efficiency. This work focuses on the in-tip fabrication of lanthanum oxide porous monolith and its application in the enrichment of phosphorylated peptides and lipids.

View Article and Find Full Text PDF

In affinity chromatography, enrichment of biomolecules is dependent on the selection of affinity sites immobilized onto a suitable support material. A few hydrazide - functionalized materials with surface modification protocols compatible to conventional support materials like silica and cellulose are reported. The study demonstrates the modification/derivatization pathways that can be adopted to modify the support materials with similar surface chemistry like cellulose, poly(GMA/DVB), or diamond.

View Article and Find Full Text PDF

The work is based on the comparative study of metal oxide nanocomposites based on alumina in combination with two transition metal oxides (zirconia and titania) and two lanthanide oxides (ceria and lanthanum oxide). The choice is based on specific aims, i.e.

View Article and Find Full Text PDF

Selectivity and sensitivity define the dynamic applicability of separation and enrichment techniques. Owing to proteome complexity, numbers of separation media have been introduced in phosphoproteomics. Complex samples are pretreated to make the low-abundance molecules detectable by mass spectrometry.

View Article and Find Full Text PDF

Metal oxides show high selectivity and sensitivity toward mass spectrometry based enrichment strategies. Phosphopeptides/phosphoproteins enrichment from biological samples is cumbersome because of their low abundance. Phosphopeptides are of interest in enzymes and phosphorylation pathways which lead to the clinical links of a disease.

View Article and Find Full Text PDF

A workflow is designed for the analysis of lipoproteins, high density lipoproteins (HDL), apoproteins, and lipid fraction, employing an organic polymeric anion exchanger through the enrichment of lipoproteins/peptides from serum. Polymeric separation media are chemically stable over the wide pH range. Poly(GMA/DVB), poly(GMA/EGDMA), and poly(GPE/DVB) are synthesized by radical polymerization, derivatized as strong anion exchangers, and used for lipoproteins enrichment.

View Article and Find Full Text PDF

Photothermal therapy (PPT) is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR) light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body.

View Article and Find Full Text PDF

Determination of the availability of phases for specific separations is an important task achieved by a separation chemist. This becomes vital when the complex samples like biofluids are dealt with in proteome science. The work presented here involves the synthesis and application of terpolymeric sorbent with different functionalizations adopted for the selective enrichment of biomolecules of interest from biological fluids.

View Article and Find Full Text PDF

The polymeric materials have contributed significantly in the area of bioanalytical science. The functionalization of polymeric backbone after its development brings unique selectivity towards the target biomolecules. In present work, the functionalities of choice have been introduced through the ring-opening of allyl glycidyl ether.

View Article and Find Full Text PDF

The new synthetic polymers have a key role to play in the separation science. The derivatization of these polymers has made them an efficient class of substrate, having unique properties and the selectively tailored surface chemistries for target molecules. The deeper and detailed characterization of complex sample types has become feasible due to the enhanced selectivity and sensitivity offered by these polymer materials.

View Article and Find Full Text PDF