Publications by authors named "Fahimeh Zare"

In the present study, a phenolic extract derived from the plant underwent nanoencapsulation. The nanoencapsulation process employed chitosan, gum (SMG), and a chitosan-SMG complex (1:1) (CCS) as coating agents. The evaluation of nanoemulsions encompassed measurements of particle size, polydispersity index (PDI), ζ-potential, encapsulation efficiency, and intensity distribution parameters.

View Article and Find Full Text PDF

This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions.

View Article and Find Full Text PDF

In this paper, we propose an optimized protocol to synthesize reproducible, accurate, sustainable integrally skinned monophasic hybrid cellulose acetate/silica membranes for ultrafiltration. Eight different membrane compositions were studied, divided into two series, one and two, each composed of four membranes. The amount of silica increased from 0 wt.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is acknowledged worldwide to be a grave threat to public health, with the number of US end-stage kidney disease (ESKD) patients increasing steeply from 10,000 in 1973 to 703,243 in 2015. Protein-bound uremic toxins (PBUTs) are excreted by renal tubular secretion in healthy humans, but hardly removed by traditional haemodialysis (HD) in ESKD patients. The accumulation of these toxins is a major contributor to these sufferers' morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared the dilution and plating methods to assess the antibacterial effects of metal-organic framework nanocubes (MOF-5-NCs) and broccoli extract on Pseudomonas aeruginosa.
  • Sonochemical synthesis was used for MOF-5-NCs, which were characterized using various techniques, while different extraction methods for broccoli were evaluated for their antioxidant properties.
  • The results indicated that the dilution method inaccurately estimated viability and that the plate count method provided a more accurate minimum bactericidal concentration (MBC), with MIC values of 7.81 mg/mL for broccoli extract and 3.13 mg/mL for MOF-5-NCs.
View Article and Find Full Text PDF

The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency.

View Article and Find Full Text PDF

This paper focuses on the development of an effective methodology to obtain the optimum removal conditions assisted by ultrasonics to maximize the simultaneous removal of dyes, eosin Y (EY), methylene blue (MB) and phenol red (PR), by Cu(OH)-NP-AC in aqueous solution using response surface methodology (RSM). The effects of variables such as pH, initial dyes concentrations (mgL), and amount of sorbent (mg) and sonication time (min) on the dyes removal were studied. A central composite design (CCD) was applied to evaluate the interactive effects of adsorption variables.

View Article and Find Full Text PDF

A two-step sample preparation technique based on dispersive micro solid-phase extraction combined with coacervative microextraction is presented for preconcentration and determination of tricyclic antidepressant drugs in biological samples. An important feature of the method is the application of hydrophobic magnetic nanoparticles, which in combination with coacervative microextraction method enables development of rapid and efficient extraction procedure in order to achievement of a high extraction efficiency. Simultaneous optimization by experimental design lead to improvement of method with low cost which supply useful information about interaction among variables.

View Article and Find Full Text PDF

A molecularly imprinted polymer was selectively applied for solid-phase extraction and diazinon residues enrichment before high-performance liquid chromatography. Diazinon was thermally copolymerized with Fe3 O4 @polyethyleneglycol nanoparticles, methacrylic acid (functional monomer), 2-hydroxyethyl methacrylate (co-monomer), and ethylene glycol dimethacrylate (cross-linking monomer) in the presence of acetonitrile (porogen) and 2,2-azobisisobutyronitrile (initiator). Then, the imprinted diazinon was reproducibly eluted with methanol/acetic acid (9:1, v/v).

View Article and Find Full Text PDF

In the present work, an efficient and environmental friendly method of ionic-liquid-based emulsified microextraction procedure accelerated by ultrasound radiation has been developed. Subsequently, its performance was compared with dispersive liquid-liquid microextraction and ultrasound-assisted surfactant-based emulsification microextraction methods. The optimization of experimental conditions was carried out by combination of central composite design and response surface methodology.

View Article and Find Full Text PDF