Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability.
View Article and Find Full Text PDFNew variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs.
View Article and Find Full Text PDFInfectious diseases remain a public healthcare concern worldwide. Amidst the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 infection, increasing resources have been diverted to investigate therapeutics targeting the COVID-19 spike glycoprotein and to develop various classes of vaccines. Most of the current investigations employ two-dimensional (2D) cell culture and animal models.
View Article and Find Full Text PDFThe crosstalk between osteoblasts and endothelial cells is critical for bone vascularization and regeneration. Here, we used a coaxial 3D bioprinting method to directly print an osteon-like structure by depositing angiogenic and osteogenic bioinks from the core and shell regions of the coaxial nozzle, respectively. The bioinks were made up of gelatin, gelatin methacryloyl (GelMA), alginate, and hydroxyapatite (HAp) nanoparticles and were loaded with human umbilical vascular endothelial cells (HUVECs) and osteoblasts (MC3T3) in the core and shell regions, respectively.
View Article and Find Full Text PDFRecently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines.
View Article and Find Full Text PDFBackground: Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone, playing a critical role in mineralization and phosphate metabolism. One important role for the expression of DMP1 in the nucleus of preosteoblasts is the up-regulation of osteoblast-specific genes such as osteocalcin and alkaline phosphatase . The present study aimed to investigate the potential application of human DMP1 promoter as an indicator marker of osteoblastic differentiation.
View Article and Find Full Text PDFThe interaction between osteogenic and angiogenic cells through a coculturing system in biocompatible materials has been considered for successfully engineering vascularized bone tissue equivalents. In this study, we developed a hydrogel-blended scaffold consisted of gelatin methacryloyl (GelMA) and alginate enriched with hydroxyapatite nanoparticles (HAP) to model an in vitro prevascularized bone construct. The hydrogel-based scaffold revealed a higher mechanical stiffness than those of pure (GelMA), alginate, and (GelMA+ HAP) hydrogels.
View Article and Find Full Text PDFVascularization has a pivotal role in engineering successful tissue constructs. However, it remains a major hurdle of bone tissue engineering, especially in clinical applications for the treatment of large bone defects. Development of vascularized and clinically-relevant engineered bone substitutes with sufficient blood supply capable of maintaining implant viability and supporting subsequent host tissue integration remains a major challenge.
View Article and Find Full Text PDFBackground: Diabetes is a devastating metabolic disease that causes long-term damage to various organs. An important leading complication of diabetes is a degenerative effect on the reproductive system including infertility and gonadal dysfunction. This study aimed to evaluate the effects of experimental type I and II diabetes on the levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone.
View Article and Find Full Text PDFNatural products are considered as promising tools for the prevention and treatment of cancer. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase unit of polycomb repressor complexes such as PRC2 complex that has oncogenic roles through interference with growth and metastatic potential. Several agents targeting EZH2 has been discovered but they often induce side effects in clinical trials.
View Article and Find Full Text PDFExosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers.
View Article and Find Full Text PDFExosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert.
View Article and Find Full Text PDFCardiovascular disease associated with myocardial infarction (MI) is among the leading causes of mortality worldwide, in part, due to the limited regenerative capacity of tissues. Although various approaches have been employed to generate bioartificial myocardial tissues, including surgical reconstruction and the use of biosynthetic or biological cell-free grafts, many challenges still remain. Natural biomaterials based on decellularization have made significant inroads into the development of favorable biomatrices for myocardial tissue regeneration.
View Article and Find Full Text PDFCurcumin is a natural dietary polyphenol for which anti-tumor effects have been documented. Anti-inflammatory and antioxidant properties of curcumin, along with its immunomodulatory, proapoptotic, and antiangiogenic properties, are often referred to as the main mechanisms underlying the anti-tumor effects. At the molecular level, inhibition of NF-kB, Akt/PI3K, and MAPK pathways and enhancement of p53 are among the most important anticancer alterations induced by curcumin.
View Article and Find Full Text PDFObjective S: The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs).
Materials And Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS).
Since bone defects can lead to various disabilities, in recent years, many increasing attempts have been made in bone tissue engineering. In this regard, scaffolds have attracted a lot of attention as three dimensional substrates for cell attachment which improve successful tissue engineering. The aim of the present study was to provide an interconnected porous scaffold to facilitate cell infiltration.
View Article and Find Full Text PDF