Elastomeric nanocomposites were prepared from carboxylated acrylonitrile butadiene rubber/chloroprene rubber (XNBR/CR), graphene and a glycidyl methacrylate (GMA)-grafted XNBR (XNBR--GMA) compatibilizer by using a two-roll mill. The effect of graphene and XNBR--GMA compatibilizer on curing characteristics, rheological and mechanical properties and morphology of the nanocomposites was investigated. The curing properties and the morphology of the nanocomposites were studied by rheometry, SEM and TEM, respectively.
View Article and Find Full Text PDFThe absorption of protein and formation of biofilms on the surface of ophthalmic lenses is one of the factors that destroy their useful performance by causing severe visual impairment, inflammation, dryness and ultimate eye discomfort. Therefore, eye lenses need to be resilient to protein absorption, which is one of the opacity factors in minimizing protein absorption on the lenses. The purpose of this study was to investigate and reduce sediment biotransformation on the surface of the semi-hardened lens based on acrylate by bulk-free radical polymerization method.
View Article and Find Full Text PDFThree polyurethane formulations were prepared on the basis of siloxane; two formulations contained 1% and 3% of a hydroxyl functionalized polyhedral oligomeric silsesquioxane [POSS (ROH)] nano-particles (as a co-chain extender) and one was without nano-particle. Structures of the polyurethanes were characterized by FTIR and SEM. The effect of POSS nano-particles on properties of the synthesized PUs was examined for vascular applications by tensile test, contact angle, SEM, AFM and endothelial cells viability evaluation.
View Article and Find Full Text PDFThe original version of this article unfortunately contained a mistake: The spelling of the Ebrahim Gafar-Zadehs' name was incorrect. The corrected name is given above.
View Article and Find Full Text PDFA multi-component acrylate-based copolymer system especially designed for application as ocular lenses is developed through free-radical, bulk polymerization of a system containing hydroxyethyl methacrylate, methyl methacrylate, triethylene glycol dimethacrylate, dimethyl itaconate, 3-(trimethoxysilyl) propylmethacrylate, Polyhedraloligomeric silsesquioxane-acrylate (POSS-acrylate) and AIBN as an initiator. The progress of the reaction was monitored by Fourier transform infrared spectroscopy (FTIR). The effect of increasing concentration of the components on the hardness of the synthesized lenses was measured by Shore Durometer before and after immersion in PBS solutions.
View Article and Find Full Text PDF