Background: Observer studies in pathology often utilize a limited number of representative slides per case, selected and reported in a nonstandardized manner. Reference diagnoses are commonly assumed to be generalizable to all slides of a case. We examined these issues in the context of pathologist concordance for histologic subtype classification of ovarian carcinomas (OCs).
View Article and Find Full Text PDFContext.—: Despite several studies focusing on the validation of whole slide imaging (WSI) across organ systems or subspecialties, the use of WSI for specific primary diagnosis tasks has been underexamined.
Objective.
This paper addresses the problem of quantifying biomarkers in multi-stained tissues based on the color and spatial information of microscopy images of the tissue. A deep learning-based method that can automatically localize and quantify the regions expressing biomarker(s) in any selected area on a whole slide image is proposed. The deep learning network, which we refer to as Whole Image (WI)-Net, is a fully convolutional network whose input is the true RGB color image of a tissue and output is a map showing the locations of each biomarker.
View Article and Find Full Text PDFBackground: Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique.
View Article and Find Full Text PDF