Native mass spectrometry (nMS) screening of natural glycan libraries against glycan-binding proteins (GBPs) is a powerful tool for ligand discovery. However, as the glycan concentrations are unknown, affinities cannot be measured directly from natural libraries. Here, we introduce ncentration-dependent (COIN)-nMS, which enables quantitative screening of natural glycan libraries by exploiting slow mixing of solutions inside a nanoflow electrospray ionization emitter.
View Article and Find Full Text PDFImmunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer.
View Article and Find Full Text PDFThe immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines.
View Article and Find Full Text PDFSialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection.
View Article and Find Full Text PDF