Publications by authors named "Fahanwi Asabuwa Ngwabebhoh"

This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange.

View Article and Find Full Text PDF

The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally.

View Article and Find Full Text PDF

In this study, ex-situ crosslinked gellan gum (GG)/bacterial cellulose (BC) hydrogels have been investigated as good absorbents for the removal of safranin and crystal violet dye pollutants. The preparation involves a cost-effective and easy-to-perform crosslinking procedure, using citric acid (CA) as a green crosslinker. The physicochemical and mechanical properties of the crosslinked hydrogels were examined by FTIR, TGA, SEM, XRD, and unconfined compression analyses.

View Article and Find Full Text PDF

In this study, an antimicrobial mumio-based hydrogel dressing was developed for wound healing application. The mechanism of gel formation was achieved via a double crosslink network formation between gelatin (GT) and polyvinyl alcohol (PVA) using polyethylene glycol diglycidyl ether (PEGDE) and borax as crosslinking agents. To enhance the mechanical integrity of the hydrogel matrix, bacterial cellulose (BC) was integrated into the GT-PVA hydrogel to produce a composite gel dressing.

View Article and Find Full Text PDF

Chromium-tanned leathers used in the manufacture of footwear and leather goods pose an environmental problem because they contain harmful chemicals and are very difficult to recycle. A solution to this problem can be composite materials from tree leaves, fruit residues and other fibrous agricultural products, which can replace chromium-tanned leather. The present study describes the preparation of biocomposite leather-like materials from microbial cellulose and maple leave fibers as bio-fillers.

View Article and Find Full Text PDF

The design of improved biopolymeric based hydrogel materials with high load-capacity to serve as biocompatible drug carriers is a challenging task with vital implications in health sciences. In this work, chitosan crosslinked dialdehyde xanthan gum interpenetrated hydroxypropyl methylcellulose gels were developed for the controlled delivery of different antibiotic drugs including ampicillin, minocycline and rifampicin. The prepared hydrogel scaffolds were characterized by rheology method, FTIR, SEM, TGA and compression analysis.

View Article and Find Full Text PDF

The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days.

View Article and Find Full Text PDF

The present study focuses on the synthesis and evaluation of neomycin-loaded hydrogels as potential substrate for wound healing application. Herein, genipin crosslinked gelatin interpenetrated diosgenin-modified nanocellulose (DGN-NC) hydrogels were synthesized. The hydrogels' chemical structures as well as surface morphology, mechanical property, and thermal behavior were characterized.

View Article and Find Full Text PDF

Coumarin and curcumin have a wide spectrum of biological and pharmacological activities including antioxidant, anti-inflammatory, antimicrobial and anticancer but hindered therapeutic applications due to low stability and poor solubility in water. The main objective of the current study was to overcome these drawbacks via improved bioavailability by nanoencapsulated emulsions. Pickering emulsion (PE) via oil-in-water approach were stabilized by aminated nanocellulose (ANC) particles through application of a full factorial optimization design for nanoemulsions containing different composition of oil phase with medium chain triglyceride (MCT) and Tween 80.

View Article and Find Full Text PDF

In the present study, nanocrystalline cellulose (NCC) was prepared via acid hydrolysis and synthesis parameters were optimized via response surface modelling with a determined maximum NCC yield of 43.8%. The optimized NCC sample was subsequently surface modified via epichlorohydrin-mediated amination forming aminated nanocrystalline cellulose (A-NCC) with an amine content calculated as 1500μmol/g.

View Article and Find Full Text PDF