Publications by authors named "Fahad Ahmed Al-Zahrani"

Background And Aims: The single nucleotide polymorphisms (SNPs) in gene have been recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This study aims to predict the structural stability, and functional impacts on variations in non-synonymous SNPs (nsSNPs) in the human gene using various computational techniques.

Materials And Methods: Several tools, including SIFT, Predict-SNP, SNPs&GO, MAPP, SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.

View Article and Find Full Text PDF

Antimicrobials are molecules that prevent the formation of microorganisms such as bacteria, viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, and contribute to developing effective antimicrobial therapies, especially in the face of increasing antibiotic resistance. This study introduced AMP-RNNpro based on Recurrent Neural Network (RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding methods that are selected according to four criteria: amino acid compositional, grouped amino acid compositional, autocorrelation, and pseudo-amino acid compositional to represent the protein sequences for efficient identification of AMPs.

View Article and Find Full Text PDF

Mental health is a major concern for all classes of people, but especially physicians in the present world. A challenging task is to identify the significant risk factors that are responsible for depression among physicians. To address this issue, the study aimed to build a machine learning-based predictive model that will be capable of predicting depression levels and finding associated risk factors.

View Article and Find Full Text PDF

This manuscript introduces a highly sensitive dual-core photonic crystal fiber (PCF) based multi-analyte surface plasmon resonance (SPR) sensor, possessing the ability to detect multiple analytes at once. A chemically stable thin plasmonic substance of gold (Au) layer, holding a thickness of 30 nm, is employed to the outer portion of the stated design that manifests a negative real permittivity. Moreover, an ultra-thin film of aluminum oxide (AlO) , having a thickness of 10 nm, is inserted into the exterior of the gold film to calibrate the resonance wavelength as well as magnify the coupling strength.

View Article and Find Full Text PDF

This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large.

View Article and Find Full Text PDF

Coronaviruses are a family of viruses that infect mammals and birds. Coronaviruses cause infections of the respiratory system in humans, which can be minor or fatal. A comparative transcriptomic analysis has been performed to establish essential profiles of the gene expression of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) linked to cystic fibrosis (CF).

View Article and Find Full Text PDF

This study aimed to identify significant gene expression profiles of the human lung epithelial cells caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We performed a comparative genomic analysis to show genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has been carried for genomic analysis that confirmed the genomic variance between SARS-CoV and SARS-CoV-2.

View Article and Find Full Text PDF

Background: Today's healthcare organizations want to implement secure and quality healthcare software as cyber-security is a significant risk factor for healthcare data. Considering security requirements during trustworthy healthcare software development process is an essential part of the quality software development. There are several Security Requirements Engineering (SRE) methodologies, framework, process, standards available today.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Fahad Ahmed Al-Zahrani"

  • - Fahad Ahmed Al-Zahrani's recent research emphasizes the application of computational techniques and machine learning models to address health-related challenges, particularly focusing on genetic factors influencing diseases like type 2 diabetes and colorectal cancer, as well as antimicrobial peptide identification.
  • - His work includes developing innovative biosensor technologies for detecting multiple analytes, demonstrating sensitivity in the visible to near-infrared region, alongside advancements in rapid viral detection methods for pathogens like COVID-19, reflecting a multidisciplinary approach to health and disease management.
  • - Additionally, Al-Zahrani's studies explore mental health issues, particularly predicting depression risk factors among clinicians, highlighting the importance of using machine learning in mental health assessments and contributing to broader healthcare solutions.