Oxidative/inflammatory stresses due to cardiopulmonary bypass (CPB) cause prolonged microglia activation and cortical dysmaturation, thereby contributing to neurodevelopmental impairments in children with congenital heart disease (CHD). This study found that delivery of mesenchymal stromal cells (MSCs) via CPB minimizes microglial activation and neuronal apoptosis, with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery. Furthermore, transcriptomic analyses suggest that exosome-derived miRNAs may be the key drivers of suppressed apoptosis and STAT3-mediated microglial activation.
View Article and Find Full Text PDFTranscranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment.
View Article and Find Full Text PDFStem cell transplants offer significant hope for brain repair following ischemic damage. Pre-clinical work suggests that therapeutic mechanisms may be multi-faceted, incorporating bone-fide circuit reconstruction by transplanted neurons, but also protection/regeneration of host circuitry. Here, we engineered hydrogel scaffolds to form "bio-bridges" within the necrotic lesion cavity, providing physical and trophic support to transplanted human embryonic stem cell-derived cortical progenitors, as well as residual host neurons.
View Article and Find Full Text PDFDopaminergic neuroblasts, isolated from ventral midbrain fetal tissue, have been shown to structurally and functionally integrate, and alleviate Parkinsonian symptoms following transplantation. The use of donor tissue isolated at an age younger than conventionally employed can result in larger grafts - a consequence of improved cell survival and neuroblast proliferation at the time of implantation. However studies have paid little attention to removal of the meninges from younger tissue, due to its age-dependent tight attachment to the underlying brain.
View Article and Find Full Text PDF